nbroad's picture
nbroad HF staff
End of training
6af222b verified
|
raw
history blame
2.28 kB
metadata
license: mit
base_model: microsoft/deberta-v3-small
tags:
  - generated_from_trainer
datasets:
  - nbroad/company_names
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: deberta-v3-small-company-names
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: nbroad/company_names
          type: nbroad/company_names
        metrics:
          - name: Precision
            type: precision
            value: 0.7687575810084907
          - name: Recall
            type: recall
            value: 0.7920906980896268
          - name: F1
            type: f1
            value: 0.780249736194161
          - name: Accuracy
            type: accuracy
            value: 0.9766189637193916

deberta-v3-small-company-names

This model is a fine-tuned version of microsoft/deberta-v3-small on the nbroad/company_names dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0707
  • Precision: 0.7688
  • Recall: 0.7921
  • F1: 0.7802
  • Accuracy: 0.9766

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-05
  • train_batch_size: 48
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0746 1.0 2126 0.0657 0.7415 0.7868 0.7635 0.9753
0.0485 2.0 4252 0.0651 0.7631 0.7904 0.7765 0.9764
0.044 3.0 6378 0.0707 0.7688 0.7921 0.7802 0.9766

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.0.1+cu117
  • Datasets 2.16.1
  • Tokenizers 0.14.1