mt5-base-qgen / README.md
lbourdois's picture
Add multilingual to the language tag
9dd7479
|
raw
history blame
3.88 kB
---
language:
- en
- hi
- de
- ar
- bn
- fi
- ja
- zh
- id
- sw
- ta
- gr
- ru
- es
- th
- tr
- vi
- multilingual
datasets:
- squad_v2
- tydiqa
- mlqa
- xquad
- germanquad
widget:
- text: 'Hugging Face has seen rapid growth in its popularity since the get-go. It
is definitely doing the right things to attract more and more people to its platform,
some of which are on the following lines: Community driven approach through large
open source repositories along with paid services. Helps to build a network of
like-minded people passionate about open source. Attractive price point. The subscription-based
features, e.g.: Inference based API, starts at a price of $9/month.'
example_title: English
- text: 'A un a�o y tres d�as de que el bal�n ruede en el Al Bayt Stadium inaugurando
el Mundial 2022, ya se han dibujado los primeros bocetos de la pr�xima Copa del
Mundo.13 selecciones est�n colocadas en el mapa con la etiqueta de clasificadas
y tienen asegurado pisar los verdes de Qatar en la primera fase final oto�al.
Serbia, Dinamarca, Espa�a, Pa�ses Bajos, Suiza, Croacia, Francia, Inglaterra,
B�lgica, Alemania, Brasil, Argentina y Qatar, como anfitriona, entrar�n en el
sorteo del 1 de abril de 2022 en Doha en el que 32 pa�ses ser�n repartidos en
sus respectivos grupos. '
example_title: Spanish
---
# Multi-lingual Question Generating Model (mt5-base)
Give the model a passage and it will generate a question about the passage.
## Trained on the following datasets:
- [SQuAD (English)](https://rajpurkar.github.io/SQuAD-explorer/)
- [TyDiQA-GoldP (Arabic, Bengali, Finnish, Japanese, Indonesian, Kiswahili, Korean, Russian, Telugu, Thai)](https://github.com/google-research-datasets/tydiqa)
- [MLQA (Arabic, Chinese, English, German, Hindi, Spanish, Vietnames)](https://github.com/facebookresearch/MLQA)
- [XQuAD (Arabic, Chinese, German, Greek, Hindi, Russian, Spanish, Thai, Turkish Vietnamese)](https://github.com/deepmind/xquad)
- [GermanQuAD (German)](https://huggingface.co/datasets/deepset/germanquad)
- [Persian QA (Persian)](https://www.kaggle.com/sajjadayobi360/persianqa)
- [Bengali QA (Bengali)](https://www.kaggle.com/mayeesha/bengali-question-answering-dataset)
- [chaii (Hindi, Tamil)](https://www.kaggle.com/c/chaii-hindi-and-tamil-question-answering/data)
## Training details
I used [flax summarization script](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) and a TPU v3-8. Summarization expects a text column and a summary column. For question generation training, use the context column instead of text column and question instead of summary column.
There is no guarantee that it will produce a question in the language of the passage, but it usually does. Lower resource languages will likely have lower quality questions.
## Using the model
#### PyTorch version
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("nbroad/mt5-base-qgen")
model = AutoModelForSeq2SeqLM.from_pretrained("nbroad/mt5-base-qgen")
text = "Hugging Face has seen rapid growth in its \
popularity since the get-go. It is definitely doing\
the right things to attract more and more people to \
its platform, some of which are on the following lines:\
Community driven approach through large open source repositories \
along with paid services. Helps to build a network of like-minded\
people passionate about open source. \
Attractive price point. The subscription-based features, e.g.: \
Inference based API, starts at a price of $9/month.\
"
inputs = tokenizer(text, return_tensors="pt")
output = model.generate(**inputs, max_length=40)
tokenizer.decode(output[0], skip_special_tokens=True)
# What is Hugging Face's price point?
```
Model trained on Cloud TPUs from Google's TPU Research Cloud (TRC)