|
--- |
|
language: |
|
- en |
|
- hi |
|
- de |
|
- ar |
|
- bn |
|
- fi |
|
- ja |
|
- zh |
|
- id |
|
- sw |
|
- ta |
|
- gr |
|
- ru |
|
- es |
|
- th |
|
- tr |
|
- vi |
|
- multilingual |
|
datasets: |
|
- squad_v2 |
|
- tydiqa |
|
- mlqa |
|
- xquad |
|
- germanquad |
|
widget: |
|
- text: 'Hugging Face has seen rapid growth in its popularity since the get-go. It |
|
is definitely doing the right things to attract more and more people to its platform, |
|
some of which are on the following lines: Community driven approach through large |
|
open source repositories along with paid services. Helps to build a network of |
|
like-minded people passionate about open source. Attractive price point. The subscription-based |
|
features, e.g.: Inference based API, starts at a price of $9/month.' |
|
example_title: English |
|
- text: 'A un a�o y tres d�as de que el bal�n ruede en el Al Bayt Stadium inaugurando |
|
el Mundial 2022, ya se han dibujado los primeros bocetos de la pr�xima Copa del |
|
Mundo.13 selecciones est�n colocadas en el mapa con la etiqueta de clasificadas |
|
y tienen asegurado pisar los verdes de Qatar en la primera fase final oto�al. |
|
Serbia, Dinamarca, Espa�a, Pa�ses Bajos, Suiza, Croacia, Francia, Inglaterra, |
|
B�lgica, Alemania, Brasil, Argentina y Qatar, como anfitriona, entrar�n en el |
|
sorteo del 1 de abril de 2022 en Doha en el que 32 pa�ses ser�n repartidos en |
|
sus respectivos grupos. ' |
|
example_title: Spanish |
|
--- |
|
# Multi-lingual Question Generating Model (mt5-base) |
|
Give the model a passage and it will generate a question about the passage. |
|
|
|
## Trained on the following datasets: |
|
|
|
- [SQuAD (English)](https://rajpurkar.github.io/SQuAD-explorer/) |
|
- [TyDiQA-GoldP (Arabic, Bengali, Finnish, Japanese, Indonesian, Kiswahili, Korean, Russian, Telugu, Thai)](https://github.com/google-research-datasets/tydiqa) |
|
- [MLQA (Arabic, Chinese, English, German, Hindi, Spanish, Vietnames)](https://github.com/facebookresearch/MLQA) |
|
- [XQuAD (Arabic, Chinese, German, Greek, Hindi, Russian, Spanish, Thai, Turkish Vietnamese)](https://github.com/deepmind/xquad) |
|
- [GermanQuAD (German)](https://huggingface.co/datasets/deepset/germanquad) |
|
- [Persian QA (Persian)](https://www.kaggle.com/sajjadayobi360/persianqa) |
|
- [Bengali QA (Bengali)](https://www.kaggle.com/mayeesha/bengali-question-answering-dataset) |
|
- [chaii (Hindi, Tamil)](https://www.kaggle.com/c/chaii-hindi-and-tamil-question-answering/data) |
|
|
|
|
|
## Training details |
|
I used [flax summarization script](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) and a TPU v3-8. Summarization expects a text column and a summary column. For question generation training, use the context column instead of text column and question instead of summary column. |
|
|
|
|
|
There is no guarantee that it will produce a question in the language of the passage, but it usually does. Lower resource languages will likely have lower quality questions. |
|
|
|
|
|
## Using the model |
|
|
|
#### PyTorch version |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("nbroad/mt5-base-qgen") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("nbroad/mt5-base-qgen") |
|
|
|
text = "Hugging Face has seen rapid growth in its \ |
|
popularity since the get-go. It is definitely doing\ |
|
the right things to attract more and more people to \ |
|
its platform, some of which are on the following lines:\ |
|
Community driven approach through large open source repositories \ |
|
along with paid services. Helps to build a network of like-minded\ |
|
people passionate about open source. \ |
|
Attractive price point. The subscription-based features, e.g.: \ |
|
Inference based API, starts at a price of $9/month.\ |
|
" |
|
|
|
inputs = tokenizer(text, return_tensors="pt") |
|
output = model.generate(**inputs, max_length=40) |
|
|
|
tokenizer.decode(output[0], skip_special_tokens=True) |
|
# What is Hugging Face's price point? |
|
``` |
|
|
|
Model trained on Cloud TPUs from Google's TPU Research Cloud (TRC) |