Edit model card

SpanMarker with roberta-large on FewNERD, CoNLL2003, and OntoNotes v5

This is a SpanMarker model trained on the FewNERD, CoNLL2003, and OntoNotes v5 dataset that can be used for Named Entity Recognition. This SpanMarker model uses roberta-large as the underlying encoder.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
ORG "IAEA", "Church 's Chicken", "Texas Chicken"

Evaluation

Metrics

Label Precision Recall F1
ORG 0.8238 0.7970 0.81019

Uses

Direct Use for Inference

from span_marker import SpanMarkerModel

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("nbroad/span-marker-roberta-large-orgs-v1")
# Run inference
entities = model.predict("The program is classified in the National Collegiate Athletic Association (NCAA) Division I Bowl Subdivision (FBS), and the team competes in the Big 12 Conference.")

Downstream Use

You can finetune this model on your own dataset.

Click to expand
from span_marker import SpanMarkerModel, Trainer

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("nbroad/span-marker-roberta-large-orgs-v1")

# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003

# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
    model=model,
    train_dataset=dataset["train"],
    eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("nbroad/span-marker-roberta-large-orgs-v1-finetuned")

Training Details

Training Set Metrics

Training set Min Median Max
Sentence length 1 23.5706 263
Entities per sentence 0 0.7865 39

Training Hyperparameters

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training Results

Epoch Step Validation Loss Validation Precision Validation Recall Validation F1 Validation Accuracy
0.1430 600 0.0085 0.7425 0.7383 0.7404 0.9726
0.2860 1200 0.0078 0.7503 0.7516 0.7510 0.9741
0.4290 1800 0.0077 0.6962 0.8107 0.7491 0.9718
0.5720 2400 0.0060 0.8074 0.7486 0.7769 0.9753
0.7150 3000 0.0057 0.8135 0.7717 0.7921 0.9770
0.8580 3600 0.0059 0.7997 0.7764 0.7879 0.9763
1.0010 4200 0.0057 0.7860 0.8051 0.7954 0.9771
1.1439 4800 0.0058 0.7907 0.7717 0.7811 0.9763
1.2869 5400 0.0058 0.8116 0.7803 0.7956 0.9774
1.4299 6000 0.0056 0.7918 0.7850 0.7884 0.9770
1.5729 6600 0.0056 0.8097 0.7837 0.7965 0.9769
1.7159 7200 0.0055 0.8113 0.7790 0.7948 0.9765
1.8589 7800 0.0052 0.8095 0.7970 0.8032 0.9782
2.0019 8400 0.0054 0.8244 0.7782 0.8006 0.9774
2.1449 9000 0.0053 0.8238 0.7970 0.8102 0.9782
2.2879 9600 0.0053 0.82 0.7901 0.8048 0.9773
2.4309 10200 0.0053 0.8243 0.7936 0.8086 0.9785
2.5739 10800 0.0053 0.8159 0.7953 0.8055 0.9781
2.7169 11400 0.0053 0.8072 0.8034 0.8053 0.9784
2.8599 12000 0.0052 0.8111 0.8017 0.8064 0.9782

Framework Versions

  • Python: 3.10.12
  • SpanMarker: 1.5.0
  • Transformers: 4.35.2
  • PyTorch: 2.1.0a0+32f93b1
  • Datasets: 2.15.0
  • Tokenizers: 0.15.0

Citation

BibTeX

@software{Aarsen_SpanMarker,
    author = {Aarsen, Tom},
    license = {Apache-2.0},
    title = {{SpanMarker for Named Entity Recognition}},
    url = {https://github.com/tomaarsen/SpanMarkerNER}
}
Downloads last month
18
Safetensors
Model size
355M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nbroad/span-marker-roberta-large-orgs-v1

Finetuned
(282)
this model

Dataset used to train nbroad/span-marker-roberta-large-orgs-v1

Evaluation results