|
from pathlib import Path |
|
import random |
|
import shutil |
|
from datasets import load_dataset |
|
from transformers import TrainingArguments |
|
from span_marker import SpanMarkerModel, Trainer |
|
from span_marker.model_card import SpanMarkerModelCardData |
|
from huggingface_hub import upload_folder, upload_file |
|
|
|
|
|
|
|
def main() -> None: |
|
|
|
labels = ["O", "B-ORG", "I-ORG"] |
|
dataset_id = "tomaarsen/ner-orgs" |
|
dataset = load_dataset(dataset_id) |
|
|
|
train_dataset = dataset["train"] |
|
eval_dataset = dataset["validation"] |
|
eval_dataset = eval_dataset.select(random.sample(range(len(eval_dataset)), k=3000)) |
|
test_dataset = dataset["test"] |
|
|
|
|
|
encoder_id = "roberta-large" |
|
model_id = "nbroad/span-marker-roberta-large-orgs-v1" |
|
model = SpanMarkerModel.from_pretrained( |
|
encoder_id, |
|
labels=labels, |
|
|
|
model_max_length=256, |
|
marker_max_length=128, |
|
entity_max_length=8, |
|
|
|
model_card_data=SpanMarkerModelCardData( |
|
model_id=model_id, |
|
dataset_id=dataset_id, |
|
encoder_id=encoder_id, |
|
dataset_name="FewNERD, CoNLL2003, and OntoNotes v5", |
|
license="cc-by-sa-4.0", |
|
language=["en"], |
|
), |
|
) |
|
|
|
|
|
output_dir = Path("models") / model_id |
|
args = TrainingArguments( |
|
output_dir=output_dir, |
|
run_name=model_id, |
|
|
|
learning_rate=3e-5, |
|
per_device_train_batch_size=32, |
|
per_device_eval_batch_size=32, |
|
num_train_epochs=3, |
|
weight_decay=0.01, |
|
warmup_ratio=0.05, |
|
fp16=True, |
|
|
|
logging_first_step=True, |
|
logging_steps=100, |
|
evaluation_strategy="steps", |
|
save_strategy="steps", |
|
eval_steps=600, |
|
save_total_limit=1, |
|
dataloader_num_workers=4, |
|
metric_for_best_model="overall_f1", |
|
greater_is_better=True, |
|
) |
|
|
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=args, |
|
train_dataset=train_dataset, |
|
eval_dataset=eval_dataset, |
|
) |
|
trainer.train() |
|
|
|
|
|
metrics = trainer.evaluate(test_dataset, metric_key_prefix="test") |
|
trainer.save_metrics("test", metrics) |
|
|
|
|
|
trainer.save_model(output_dir / "checkpoint-final") |
|
shutil.copy2(__file__, output_dir / "checkpoint-final" / "train.py") |
|
|
|
|
|
breakpoint() |
|
model.push_to_hub(model_id, private=True) |
|
upload_folder(folder_path=output_dir / "runs", path_in_repo="runs", repo_id=model_id) |
|
upload_file(path_or_fileobj=__file__, path_in_repo="train.py", repo_id=model_id) |
|
upload_file(path_or_fileobj=output_dir / "all_results.json", path_in_repo="all_results.json", repo_id=model_id) |
|
upload_file(path_or_fileobj=output_dir / "emissions.csv", path_in_repo="emissions.csv", repo_id=model_id) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |