ndeclarke's picture
End of training
27fcd84 verified
|
raw
history blame
3.02 kB
metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
  - bleu
model-index:
  - name: wav2vec2-mms-1b-CV17.0-training_set_variations
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: ta
          split: validation
          args: ta
        metrics:
          - name: Wer
            type: wer
            value: 0.3597180870859695
          - name: Bleu
            type: bleu
            value: 0.4226157099926465

wav2vec2-mms-1b-CV17.0-training_set_variations

This model is a fine-tuned version of facebook/mms-1b-all on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2047
  • Wer: 0.3597
  • Cer: 0.0579
  • Bleu: 0.4226

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.15
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer Bleu
6.3615 0.3906 100 0.2954 0.4162 0.0682 0.3508
0.2115 0.7812 200 0.2266 0.3822 0.0619 0.3888
0.1868 1.1719 300 0.2227 0.3755 0.0608 0.3981
0.1913 1.5625 400 0.2274 0.3912 0.0637 0.3779
0.1896 1.9531 500 0.2263 0.3858 0.0631 0.3867
0.1769 2.3438 600 0.2176 0.3785 0.0618 0.3942
0.1752 2.7344 700 0.2162 0.3816 0.0614 0.3887
0.1777 3.125 800 0.2098 0.3606 0.0582 0.4260
0.1747 3.5156 900 0.2078 0.3657 0.0585 0.4111
0.1672 3.9062 1000 0.2075 0.3770 0.0595 0.3920
0.1583 4.2969 1100 0.2060 0.3631 0.0580 0.4137
0.1713 4.6875 1200 0.2064 0.3664 0.0587 0.4118
0.1563 5.0781 1300 0.2047 0.3597 0.0579 0.4226

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1