ndeclarke's picture
End of training
921b12e verified
|
raw
history blame
3.57 kB
metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
  - bleu
model-index:
  - name: wav2vec2-mms-1b-CV17.0-training_set_variations
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: ta
          split: validation
          args: ta
        metrics:
          - name: Wer
            type: wer
            value: 0.35028609973948643
          - name: Bleu
            type: bleu
            value: 0.4335646189418293

wav2vec2-mms-1b-CV17.0-training_set_variations

This model is a fine-tuned version of facebook/mms-1b-all on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1970
  • Wer: 0.3503
  • Cer: 0.0557
  • Bleu: 0.4336

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.15
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer Bleu
7.329 0.0977 100 0.3217 0.4338 0.0716 0.3272
0.2154 0.1953 200 0.2314 0.3794 0.0634 0.3999
0.189 0.2930 300 0.2188 0.3656 0.0592 0.4166
0.1975 0.3906 400 0.2212 0.3763 0.0608 0.4032
0.1813 0.4883 500 0.2117 0.3634 0.0585 0.4171
0.1791 0.5859 600 0.2074 0.3590 0.0578 0.4220
0.187 0.6836 700 0.2087 0.3607 0.0582 0.4188
0.1789 0.7812 800 0.2064 0.3542 0.0568 0.4327
0.1704 0.8789 900 0.2076 0.3661 0.0587 0.4095
0.1813 0.9766 1000 0.2044 0.3589 0.0574 0.4200
0.1633 1.0742 1100 0.2029 0.3582 0.0575 0.4220
0.1699 1.1719 1200 0.2034 0.3537 0.0566 0.4335
0.1822 1.2695 1300 0.2037 0.3589 0.0578 0.4227
0.1654 1.3672 1400 0.2028 0.3549 0.0568 0.4288
0.1696 1.4648 1500 0.2011 0.3579 0.0567 0.4199
0.1622 1.5625 1600 0.1999 0.3568 0.0570 0.4228
0.1742 1.6602 1700 0.1983 0.3490 0.0559 0.4365
0.1581 1.7578 1800 0.1973 0.3511 0.0558 0.4329
0.1616 1.8555 1900 0.1970 0.3482 0.0556 0.4381
0.1607 1.9531 2000 0.1970 0.3503 0.0557 0.4336

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1