|
--- |
|
license: other |
|
base_model: apple/mobilevit-xx-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: KDRSSC_TinyViT2MobileViT-xx-small |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# KDRSSC_TinyViT2MobileViT-xx-small |
|
|
|
This model is a fine-tuned version of [apple/mobilevit-xx-small](https://huggingface.co/apple/mobilevit-xx-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8217 |
|
- Accuracy: 0.8398 |
|
- Precision: 0.8409 |
|
- Recall: 0.8398 |
|
- F1: 0.8365 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 2.1113 | 1.0 | 148 | 1.7471 | 0.588 | 0.6313 | 0.588 | 0.5698 | |
|
| 1.6003 | 2.0 | 296 | 1.3462 | 0.704 | 0.7133 | 0.704 | 0.6844 | |
|
| 1.2989 | 3.0 | 444 | 1.1278 | 0.759 | 0.7716 | 0.759 | 0.7509 | |
|
| 1.1115 | 4.0 | 592 | 0.9891 | 0.802 | 0.8022 | 0.802 | 0.7952 | |
|
| 0.9978 | 5.0 | 740 | 0.9123 | 0.827 | 0.8413 | 0.827 | 0.8255 | |
|
| 0.9274 | 6.0 | 888 | 0.8512 | 0.843 | 0.8445 | 0.843 | 0.8387 | |
|
| 0.8748 | 7.0 | 1036 | 0.8210 | 0.842 | 0.8412 | 0.842 | 0.8373 | |
|
| 0.8411 | 8.0 | 1184 | 0.7952 | 0.842 | 0.8398 | 0.842 | 0.8365 | |
|
| 0.818 | 9.0 | 1332 | 0.7814 | 0.852 | 0.8574 | 0.852 | 0.8489 | |
|
| 0.8081 | 10.0 | 1480 | 0.7796 | 0.853 | 0.8591 | 0.853 | 0.8487 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|