Update README.md
#2
by
abhinavnmagic
- opened
README.md
CHANGED
@@ -4,28 +4,25 @@ tags:
|
|
4 |
- vllm
|
5 |
---
|
6 |
|
|
|
7 |
|
|
|
8 |
Meta-Llama-3-8B-Instruct quantized to FP8 weights and activations using per-tensor quantization, ready for inference with vLLM >= 0.5.0.
|
9 |
|
|
|
10 |
Produced using [AutoFP8 with calibration samples from ultrachat](https://github.com/neuralmagic/AutoFP8/blob/147fa4d9e1a90ef8a93f96fc7d9c33056ddc017a/example_dataset.py).
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
16 |
-
|
17 |
-
|
|
18 |
-
| -
|
19 |
-
| -
|
20 |
-
| -
|
21 |
-
| -
|
|
|
|
|
|
|
22 |
|
23 |
-
vllm (pretrained=nm-testing/Meta-Llama-3-8B-Instruct-FP8,quantization=fp8,gpu_memory_utilization=0.4), gen_kwargs: (None), limit: None, num_fewshot: 5, batch_size: 16
|
24 |
-
| Groups |Version|Filter|n-shot|Metric|Value | |Stderr|
|
25 |
-
|------------------|-------|------|-----:|------|-----:|---|-----:|
|
26 |
-
|mmlu |N/A |none | 0|acc |0.6567|± |0.0038|
|
27 |
-
| - humanities |N/A |none | 5|acc |0.6072|± |0.0068|
|
28 |
-
| - other |N/A |none | 5|acc |0.7206|± |0.0078|
|
29 |
-
| - social_sciences|N/A |none | 5|acc |0.7618|± |0.0075|
|
30 |
-
| - stem |N/A |none | 5|acc |0.5649|± |0.0085|
|
31 |
-
```
|
|
|
4 |
- vllm
|
5 |
---
|
6 |
|
7 |
+
# Meta-Llama-3-8B-Instruct-FP8
|
8 |
|
9 |
+
## Model Overview
|
10 |
Meta-Llama-3-8B-Instruct quantized to FP8 weights and activations using per-tensor quantization, ready for inference with vLLM >= 0.5.0.
|
11 |
|
12 |
+
## Usage and Creation
|
13 |
Produced using [AutoFP8 with calibration samples from ultrachat](https://github.com/neuralmagic/AutoFP8/blob/147fa4d9e1a90ef8a93f96fc7d9c33056ddc017a/example_dataset.py).
|
14 |
|
15 |
+
## Evaluation
|
16 |
+
|
17 |
+
### Open LLM Leaderboard evaluation scores
|
18 |
+
| | Meta-Llama-3-8B-Instruct | Meta-Llama-3-8B-Instruct-FP8<br>(this model) |
|
19 |
+
| :------------------: | :----------------------: | :------------------------------------------------: |
|
20 |
+
| arc-c<br>25-shot | 62.54 | 61.77 |
|
21 |
+
| hellaswag<br>10-shot | 78.83 | 78.56 |
|
22 |
+
| mmlu<br>5-shot | 66.60 | 66.27 |
|
23 |
+
| truthfulqa<br>0-shot | 52.44 | 52.35 |
|
24 |
+
| winogrande<br>5-shot | 75.93 | 76.4 |
|
25 |
+
| gsm8k<br>5-shot | 75.96 | 73.99 |
|
26 |
+
| **Average<br>Accuracy** | **68.71** | **68.22** |
|
27 |
+
| **Recovery** | **100%** | **99.28%** |
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|