Lin-K76's picture
Update README.md
a6d99ba verified
|
raw
history blame
7.43 kB
---
tags:
- fp8
- vllm
license: mit
license_link: https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/LICENSE
---
# Phi-3-mini-128k-instruct-FP8
## Model Overview
- **Model Architecture:** Phi-3
- **Input:** Text
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** FP8
- **Activation quantization:** FP8
- **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct), this models is intended for assistant-like chat.
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
- **Release Date:** 8/11/2024
- **Version:** 1.1
- **License(s):** [mit](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/LICENSE)
- **Model Developers:** Neural Magic
Quantized version of [Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct), with the new configuration files.
It achieves an average score of 69.45 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 69.69.
### Model Optimizations
This model was obtained by quantizing the weights and activations of [Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) to FP8 data type, ready for inference with vLLM >= 0.5.1.
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
Only the weights and activations of the linear operators within transformers blocks are quantized. Symmetric per-tensor quantization is applied, in which a single linear scaling maps the FP8 representations of the quantized weights and activations.
[AutoFP8](https://github.com/neuralmagic/AutoFP8) is used for quantization with 512 sequences of UltraChat.
## Deployment
### Use with vLLM
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "neuralmagic/Phi-3-mini-128k-instruct-FP8"
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you? Remember to respond in pirate speak!"},
]
prompts = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
llm = LLM(model=model_id)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
```
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
## Creation
This model was created by applying [LLM Compressor with calibration samples from UltraChat](https://github.com/vllm-project/llm-compressor/blob/sa/big_model_support/examples/big_model_offloading/big_model_w8a8_calibrate.py), as presented in the code snipet below.
```python
import torch
from datasets import load_dataset
from transformers import AutoTokenizer
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
from llmcompressor.transformers.compression.helpers import (
calculate_offload_device_map,
custom_offload_device_map,
)
recipe = """
quant_stage:
quant_modifiers:
QuantizationModifier:
ignore: ["lm_head"]
config_groups:
group_0:
weights:
num_bits: 8
type: float
strategy: tensor
dynamic: false
symmetric: true
input_activations:
num_bits: 8
type: float
strategy: tensor
dynamic: false
symmetric: true
targets: ["Linear"]
"""
model_stub = "microsoft/Phi-3-mini-128k-instruct"
model_name = model_stub.split("/")[-1]
device_map = calculate_offload_device_map(
model_stub, reserve_for_hessians=False, num_gpus=1, torch_dtype=torch.float16
)
model = SparseAutoModelForCausalLM.from_pretrained(
model_stub, torch_dtype=torch.float16, device_map=device_map
)
tokenizer = AutoTokenizer.from_pretrained(model_stub)
output_dir = f"./{model_name}-FP8"
DATASET_ID = "HuggingFaceH4/ultrachat_200k"
DATASET_SPLIT = "train_sft"
NUM_CALIBRATION_SAMPLES = 512
MAX_SEQUENCE_LENGTH = 4096
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))
def preprocess(example):
return {
"text": tokenizer.apply_chat_template(
example["messages"],
tokenize=False,
)
}
ds = ds.map(preprocess)
def tokenize(sample):
return tokenizer(
sample["text"],
padding=False,
max_length=MAX_SEQUENCE_LENGTH,
truncation=True,
add_special_tokens=False,
)
ds = ds.map(tokenize, remove_columns=ds.column_names)
oneshot(
model=model,
output_dir=output_dir,
dataset=ds,
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
save_compressed=True,
)
```
## Evaluation
The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/383bbd54bc621086e05aa1b030d8d4d5635b25e6) (commit 383bbd54bc621086e05aa1b030d8d4d5635b25e6) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command:
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Phi-3-mini-128k-instruct-FP8",dtype=auto,gpu_memory_utilization=0.4,add_bos_token=True,max_model_len=4096 \
--tasks openllm \
--batch_size auto
```
### Accuracy
#### Open LLM Leaderboard evaluation scores
<table>
<tr>
<td><strong>Benchmark</strong>
</td>
<td><strong>Phi-3-mini-128k-instruct</strong>
</td>
<td><strong>Phi-3-mini-128k-instruct-FP8(this model)</strong>
</td>
<td><strong>Recovery</strong>
</td>
</tr>
<tr>
<td>MMLU (5-shot)
</td>
<td>69.33
</td>
<td>68.72
</td>
<td>99.12%
</td>
</tr>
<tr>
<td>ARC Challenge (25-shot)
</td>
<td>63.05
</td>
<td>62.54
</td>
<td>99.19%
</td>
</tr>
<tr>
<td>GSM-8K (5-shot, strict-match)
</td>
<td>76.95
</td>
<td>77.03
</td>
<td>100.1%
</td>
</tr>
<tr>
<td>Hellaswag (10-shot)
</td>
<td>79.58
</td>
<td>79.37
</td>
<td>99.74%
</td>
</tr>
<tr>
<td>Winogrande (5-shot)
</td>
<td>74.82
</td>
<td>75.37
</td>
<td>100.7%
</td>
</tr>
<tr>
<td>TruthfulQA (0-shot)
</td>
<td>54.41
</td>
<td>53.68
</td>
<td>98.66%
</td>
</tr>
<tr>
<td><strong>Average</strong>
</td>
<td><strong>69.69</strong>
</td>
<td><strong>69.45</strong>
</td>
<td><strong>99.66%</strong>
</td>
</tr>
</table>