SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 5 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
NONE |
|
KUBIE |
|
aws_iam |
|
DOC |
|
access_management |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.9962 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("How can I reduce stress?")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 8.5408 | 17 |
Label | Training Sample Count |
---|---|
aws_iam | 20 |
access_management | 20 |
DOC | 18 |
KUBIE | 20 |
NONE | 20 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0021 | 1 | 0.2675 | - |
0.1042 | 50 | 0.1143 | - |
0.2083 | 100 | 0.0578 | - |
0.3125 | 150 | 0.0028 | - |
0.4167 | 200 | 0.0032 | - |
0.5208 | 250 | 0.0007 | - |
0.625 | 300 | 0.0006 | - |
0.7292 | 350 | 0.0004 | - |
0.8333 | 400 | 0.0005 | - |
0.9375 | 450 | 0.0006 | - |
1.0 | 480 | - | 0.0027 |
1.0417 | 500 | 0.0004 | - |
1.1458 | 550 | 0.0002 | - |
1.25 | 600 | 0.0003 | - |
1.3542 | 650 | 0.0002 | - |
1.4583 | 700 | 0.0002 | - |
1.5625 | 750 | 0.0002 | - |
1.6667 | 800 | 0.0002 | - |
1.7708 | 850 | 0.0002 | - |
1.875 | 900 | 0.0002 | - |
1.9792 | 950 | 0.0001 | - |
2.0 | 960 | - | 0.0032 |
2.0833 | 1000 | 0.0001 | - |
2.1875 | 1050 | 0.0002 | - |
2.2917 | 1100 | 0.0001 | - |
2.3958 | 1150 | 0.0002 | - |
2.5 | 1200 | 0.0002 | - |
2.6042 | 1250 | 0.0001 | - |
2.7083 | 1300 | 0.0002 | - |
2.8125 | 1350 | 0.0001 | - |
2.9167 | 1400 | 0.0001 | - |
3.0 | 1440 | - | 0.004 |
3.0208 | 1450 | 0.0001 | - |
3.125 | 1500 | 0.0001 | - |
3.2292 | 1550 | 0.0002 | - |
3.3333 | 1600 | 0.0002 | - |
3.4375 | 1650 | 0.0001 | - |
3.5417 | 1700 | 0.0002 | - |
3.6458 | 1750 | 0.0001 | - |
3.75 | 1800 | 0.0001 | - |
3.8542 | 1850 | 0.0001 | - |
3.9583 | 1900 | 0.0002 | - |
4.0 | 1920 | - | 0.0037 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.9.6
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.40.1
- PyTorch: 2.1.2
- Datasets: 2.19.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.