nguyennghia0902's picture
Training in progress epoch 11
63e50c0
|
raw
history blame
4.21 kB
metadata
license: apache-2.0
base_model: google/electra-small-discriminator
tags:
  - generated_from_keras_callback
model-index:
  - name: nguyennghia0902/electra-small-discriminator_0.0001_32_15e
    results: []

nguyennghia0902/electra-small-discriminator_0.0001_32_15e

This model is a fine-tuned version of google/electra-small-discriminator on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.7520
  • Train End Logits Accuracy: 0.7904
  • Train Start Logits Accuracy: 0.7699
  • Validation Loss: 0.3342
  • Validation End Logits Accuracy: 0.9048
  • Validation Start Logits Accuracy: 0.9021
  • Epoch: 11

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0001, 'decay_steps': 23445, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train End Logits Accuracy Train Start Logits Accuracy Validation Loss Validation End Logits Accuracy Validation Start Logits Accuracy Epoch
3.0253 0.3302 0.2968 2.2414 0.4704 0.4533 0
2.3162 0.4597 0.4260 1.8267 0.5511 0.5364 1
2.0285 0.5160 0.4813 1.5472 0.6109 0.5994 2
1.8125 0.5587 0.5287 1.2995 0.6688 0.6512 3
1.6192 0.5963 0.5677 1.0973 0.7105 0.7030 4
1.4482 0.6341 0.6066 0.8998 0.7637 0.7547 5
1.2931 0.6694 0.6423 0.7622 0.7920 0.7916 6
1.1518 0.6980 0.6741 0.6412 0.8260 0.8197 7
1.0351 0.7240 0.7025 0.5316 0.8518 0.8531 8
0.9269 0.7488 0.7270 0.4671 0.8701 0.8700 9
0.8354 0.7714 0.7489 0.3836 0.8910 0.8896 10
0.7520 0.7904 0.7699 0.3342 0.9048 0.9021 11

Framework versions

  • Transformers 4.39.3
  • TensorFlow 2.15.0
  • Datasets 2.18.0
  • Tokenizers 0.15.2