metadata
license: apache-2.0
base_model: google/electra-small-discriminator
tags:
- generated_from_keras_callback
model-index:
- name: textmining_proj02_electra
results: []
textmining_proj02_electra
This model is a fine-tuned version of google/electra-small-discriminator on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 2.0145
- Train End Logits Accuracy: 0.5186
- Train Start Logits Accuracy: 0.4898
- Validation Loss: 1.7837
- Validation End Logits Accuracy: 0.5643
- Validation Start Logits Accuracy: 0.5514
- Epoch: 9
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 15630, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
---|---|---|---|---|---|---|
3.5498 | 0.2455 | 0.2154 | 2.7762 | 0.3625 | 0.3353 | 0 |
2.7913 | 0.3657 | 0.3291 | 2.5014 | 0.4105 | 0.3950 | 1 |
2.5710 | 0.4032 | 0.3725 | 2.2847 | 0.4635 | 0.4409 | 2 |
2.4125 | 0.4377 | 0.4076 | 2.1311 | 0.4904 | 0.4761 | 3 |
2.2918 | 0.4641 | 0.4348 | 2.0155 | 0.5161 | 0.5063 | 4 |
2.1978 | 0.4833 | 0.4512 | 1.9319 | 0.5343 | 0.5214 | 5 |
2.1306 | 0.4960 | 0.4664 | 1.8634 | 0.5505 | 0.5352 | 6 |
2.0801 | 0.5018 | 0.4755 | 1.8229 | 0.5568 | 0.5457 | 7 |
2.0404 | 0.5139 | 0.4837 | 1.7963 | 0.5611 | 0.5488 | 8 |
2.0145 | 0.5186 | 0.4898 | 1.7837 | 0.5643 | 0.5514 | 9 |
Framework versions
- Transformers 4.39.3
- TensorFlow 2.15.0
- Datasets 2.18.0
- Tokenizers 0.15.2