nguyennghia0902's picture
Upload TFElectraForQuestionAnswering
c56b9f6 verified
|
raw
history blame
3.81 kB
metadata
license: apache-2.0
base_model: google/electra-small-discriminator
tags:
  - generated_from_keras_callback
model-index:
  - name: textmining_proj02_electra
    results: []

textmining_proj02_electra

This model is a fine-tuned version of google/electra-small-discriminator on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 2.0145
  • Train End Logits Accuracy: 0.5186
  • Train Start Logits Accuracy: 0.4898
  • Validation Loss: 1.7837
  • Validation End Logits Accuracy: 0.5643
  • Validation Start Logits Accuracy: 0.5514
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 15630, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train End Logits Accuracy Train Start Logits Accuracy Validation Loss Validation End Logits Accuracy Validation Start Logits Accuracy Epoch
3.5498 0.2455 0.2154 2.7762 0.3625 0.3353 0
2.7913 0.3657 0.3291 2.5014 0.4105 0.3950 1
2.5710 0.4032 0.3725 2.2847 0.4635 0.4409 2
2.4125 0.4377 0.4076 2.1311 0.4904 0.4761 3
2.2918 0.4641 0.4348 2.0155 0.5161 0.5063 4
2.1978 0.4833 0.4512 1.9319 0.5343 0.5214 5
2.1306 0.4960 0.4664 1.8634 0.5505 0.5352 6
2.0801 0.5018 0.4755 1.8229 0.5568 0.5457 7
2.0404 0.5139 0.4837 1.7963 0.5611 0.5488 8
2.0145 0.5186 0.4898 1.7837 0.5643 0.5514 9

Framework versions

  • Transformers 4.39.3
  • TensorFlow 2.15.0
  • Datasets 2.18.0
  • Tokenizers 0.15.2