Huggingface Implementation of AV-HuBERT on the MuAViC Dataset
This repository contains a Huggingface implementation of the AV-HuBERT (Audio-Visual Hidden Unit BERT) model, specifically trained and tested on the MuAViC (Multilingual Audio-Visual Corpus) dataset. AV-HuBERT is a self-supervised model designed for audio-visual speech recognition, leveraging both audio and visual modalities to achieve robust performance, especially in noisy environments.
Key features of this repository include:
Pre-trained Models: Access pre-trained AV-HuBERT models fine-tuned on the MuAViC dataset. The pre-trained model been exported from MuAViC repository.
Inference scripts: Easily pipelines using Huggingface’s interface.
Data preprocessing scripts: Including normalize frame rate, extract lips and audio.
Inference code
git clone https://github.com/nguyenvulebinh/AV-HuBERT-S2S.git
cd AV-HuBERT-S2S
conda create -n avhuberts2s python=3.9
conda activate avhuberts2s
pip install -r requirements.txt
python run_example.py
from src.model.avhubert2text import AV2TextForConditionalGeneration
from src.dataset.load_data import load_feature
from transformers import Speech2TextTokenizer
import torch
if __name__ == "__main__":
# Load pretrained english model
model = AV2TextForConditionalGeneration.from_pretrained('nguyenvulebinh/AV-HuBERT')
tokenizer = Speech2TextTokenizer.from_pretrained('nguyenvulebinh/AV-HuBERT')
# cuda
model = model.cuda().eval()
# Load normalized input data
sample = load_feature(
'./example/lip_movement.mp4',
"./example/noisy_audio.wav"
)
# cuda
audio_feats = sample['audio_source'].cuda()
video_feats = sample['video_source'].cuda()
attention_mask = torch.BoolTensor(audio_feats.size(0), audio_feats.size(-1)).fill_(False).cuda()
# Generate output sequence using HF interface
output = model.generate(
audio_feats,
attention_mask=attention_mask,
video=video_feats,
)
# decode output sequence
print(tokenizer.batch_decode(output, skip_special_tokens=True))
# check output
assert output.detach().cpu().numpy().tolist() == [[ 2, 16, 130, 516, 8, 339, 541, 808, 210, 195, 541, 79, 130, 317, 269, 4, 2]]
print("Example run successfully")
Data preprocessing scripts
mkdir model-bin
cd model-bin
wget https://huggingface.co/nguyenvulebinh/AV-HuBERT/resolve/main/20words_mean_face.npy .
wget https://huggingface.co/nguyenvulebinh/AV-HuBERT/resolve/main/shape_predictor_68_face_landmarks.dat .
# raw video only support 4:3 ratio now
cp raw_video.mp4 ./example/
python src/dataset/video_to_audio_lips.py
Pretrained model
Task | Languages | Huggingface |
---|---|---|
AVSR | ar | TODO |
de | TODO | |
el | TODO | |
en | English Chekpoint | |
es | TODO | |
fr | TODO | |
it | TODO | |
pt | TODO | |
ru | TODO | |
ar,de,el,es,fr,it,pt,ru | TODO | |
AVST | en-el | TODO |
en-es | TODO | |
en-fr | TODO | |
en-it | TODO | |
en-pt | TODO | |
en-ru | TODO | |
el-en | TODO | |
es-en | TODO | |
fr-en | TODO | |
it-en | TODO | |
pt-en | TODO | |
ru-en | TODO | |
{el,es,fr,it,pt,ru}-en | TODO |
Acknowledgments
AV-HuBERT: A significant portion of the codebase in this repository has been adapted from the original AV-HuBERT implementation.
MuAViC Repository: We also gratefully acknowledge the creators of the MuAViC dataset and repository for providing the pre-trained models used in this project
License
CC-BY-NC 4.0
Citation
@article{anwar2023muavic,
title={MuAViC: A Multilingual Audio-Visual Corpus for Robust Speech Recognition and Robust Speech-to-Text Translation},
author={Anwar, Mohamed and Shi, Bowen and Goswami, Vedanuj and Hsu, Wei-Ning and Pino, Juan and Wang, Changhan},
journal={arXiv preprint arXiv:2303.00628},
year={2023}
}
- Downloads last month
- 460