File size: 6,435 Bytes
69ae97f
b5373b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf248c8
 
 
 
 
 
b5373b9
74353b7
 
 
 
 
 
096eace
69ae97f
bf248c8
74353b7
bf248c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21e0c10
bf248c8
21e0c10
 
bf248c8
21e0c10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74353b7
bf248c8
21e0c10
 
bf248c8
 
 
 
 
 
 
 
 
415e069
bf248c8
 
 
 
415e069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf248c8
21e0c10
 
bf248c8
 
415e069
 
 
 
 
 
 
 
 
bf248c8
415e069
 
bf248c8
415e069
 
bf248c8
415e069
 
 
 
bf248c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b26cccc
 
bf248c8
 
 
 
 
 
b26cccc
 
bf248c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
---
model-index:
- name: mmarco-bert-base-italian-uncased
  results:
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_massive_intent
      name: MTEB MassiveIntentClassification (it)
      config: it
      split: test
      revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
    metrics:
    - type: accuracy
      value: 55.06052454606589
    - type: f1
      value: 54.014768121214104
  - task:
      type: Classification
    dataset:
      type: mteb/amazon_massive_scenario
      name: MTEB MassiveScenarioClassification (it)
      config: it
      split: test
      revision: 7d571f92784cd94a019292a1f45445077d0ef634
    metrics:
    - type: accuracy
      value: 63.04303967720243
    - type: f1
      value: 62.695230714417406
  - task:
      type: STS
    dataset:
      type: mteb/sts22-crosslingual-sts
      name: MTEB STS22 (it)
      config: it
      split: test
      revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
    metrics:
    - type: cos_sim_pearson
      value: 64.73840574137837
    - type: cos_sim_spearman
      value: 69.44233124548987
    - type: euclidean_pearson
      value: 67.65045364124317
    - type: euclidean_spearman
      value: 69.586510471675
    - type: manhattan_pearson
      value: 67.76125181623837
    - type: manhattan_spearman
      value: 69.61010945802974
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- mteb
license: mit
datasets:
- unicamp-dl/mmarco
language:
- it
library_name: sentence-transformers
region: Italy
---

# MMARCO-bert-base-italian-uncased

This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.

<!--- Describe your model here -->

## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer, util

query = "Quante persone vivono a Londra?"
docs = ["A Londra vivono circa 9 milioni di persone", "Londra è conosciuta per il suo quartiere finanziario"]

#Load the model
model = SentenceTransformer('nickprock/mmarco-bert-base-italian-uncased')

#Encode query and documents
query_emb = model.encode(query)
doc_emb = model.encode(docs)

#Compute dot score between query and all document embeddings
scores = util.dot_score(query_emb, doc_emb)[0].cpu().tolist()

#Combine docs & scores
doc_score_pairs = list(zip(docs, scores))

#Sort by decreasing score
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)

#Output passages & scores
for doc, score in doc_score_pairs:
    print(score, doc)
```



## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

```python
from transformers import AutoTokenizer, AutoModel
import torch

#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output.last_hidden_state
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


#Encode text
def encode(texts):
    # Tokenize sentences
    encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt')

    # Compute token embeddings
    with torch.no_grad():
        model_output = model(**encoded_input, return_dict=True)

    # Perform pooling
    embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

    return embeddings


# Sentences we want sentence embeddings for
query = "Quante persone vivono a Londra?"
docs = ["A Londra vivono circa 9 milioni di persone", "Londra è conosciuta per il suo quartiere finanziario"]

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained("nickprock/mmarco-bert-base-italian-uncased")
model = AutoModel.from_pretrained("nickprock/mmarco-bert-base-italian-uncased")

#Encode query and docs
query_emb = encode(query)
doc_emb = encode(docs)

#Compute dot score between query and all document embeddings
scores = torch.mm(query_emb, doc_emb.transpose(0, 1))[0].cpu().tolist()

#Combine docs & scores
doc_score_pairs = list(zip(docs, scores))

#Sort by decreasing score
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)

#Output passages & scores
print("Query:", query)
for doc, score in doc_score_pairs:
    print(score, doc)

```



## Evaluation Results

<!--- Describe how your model was evaluated -->

For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})


## Training
The model was trained with the parameters:

**DataLoader**:

`torch.utils.data.dataloader.DataLoader` of length 6250 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```

**Loss**:

`sentence_transformers.losses.TripletLoss.TripletLoss` with parameters:
  ```
  {'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 5}
  ```

Parameters of the fit()-Method:
```
{
    "epochs": 10,
    "evaluation_steps": 500,
    "evaluator": "sentence_transformers.evaluation.TripletEvaluator.TripletEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": 1500,
    "warmup_steps": 6250,
    "weight_decay": 0.01
}
```


## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```

## Citing & Authors

<!--- Describe where people can find more information -->