metadata
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: sentiment-polish-gpt2-small
results:
- task:
type: text-classification
dataset:
type: allegro/klej-polemo2-out
name: klej-polemo2-out
metrics:
- type: accuracy
value: 98.38%
license: mit
language:
- pl
datasets:
- clarin-pl/polemo2-official
sentiment-polish-gpt2-small
This model was trained from polish-gpt2-small on the polemo2-official dataset. It achieves the following results on the evaluation set:
- Loss: 0.4659
- Accuracy: 0.9627
Model description
Trained from polish-gpt2-small
Intended uses & limitations
Sentiment analysis - neutral/negative/positive/ambiguous
Training and evaluation data
Merged all rows from polemo2-official dataset.
Train/test split: 80%/20%
Datacollator:
from transformers import DataCollatorWithPadding
data_collator = DataCollatorWithPadding(
tokenizer=tokenizer,
padding="longest",
max_length=128,
pad_to_multiple_of=8
)
Training procedure
GPU: RTX 3090
Training time: 2:53:05
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.4049 | 1.0 | 3284 | 0.3351 | 0.8792 |
0.1885 | 2.0 | 6568 | 0.2625 | 0.9218 |
0.1182 | 3.0 | 9852 | 0.2583 | 0.9419 |
0.0825 | 4.0 | 13136 | 0.2886 | 0.9482 |
0.0586 | 5.0 | 16420 | 0.3343 | 0.9538 |
0.034 | 6.0 | 19704 | 0.3734 | 0.9595 |
0.0288 | 7.0 | 22988 | 0.4125 | 0.9599 |
0.0185 | 8.0 | 26273 | 0.4262 | 0.9626 |
0.0069 | 9.0 | 29557 | 0.4529 | 0.9622 |
0.0059 | 10.0 | 32840 | 0.4659 | 0.9627 |
Evaluation
Evaluated on allegro/klej-polemo2-out test dataset.
from datasets import load_dataset
from evaluate import evaluator
data = load_dataset("allegro/klej-polemo2-out", split="test").shuffle(seed=42)
task_evaluator = evaluator("text-classification")
# fix labels
l = {
"__label__meta_zero": 0,
"__label__meta_minus_m": 1,
"__label__meta_plus_m": 2,
"__label__meta_amb": 3
}
def fix_labels(examples):
examples["target"] = l[examples["target"]]
return examples
data = data.map(fix_labels)
eval_resutls = task_evaluator.compute(
model_or_pipeline="nie3e/sentiment-polish-gpt2-small",
data=data,
label_mapping={"NEUTRAL": 0, "NEGATIVE": 1, "POSITIVE": 2, "AMBIGUOUS": 3},
input_column="sentence",
label_column="target"
)
print(eval_resutls)
{
"accuracy": 0.9838056680161943,
"total_time_in_seconds": 5.2441766999982065,
"samples_per_second": 94.1997244296076,
"latency_in_seconds": 0.010615742307688678
}
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0