amd-full-v1 / README.md
nikcheerla's picture
Add SetFit model
cd377d3
metadata
library_name: setfit
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
metrics:
  - accuracy
widget:
  - text: 'Your call has been forwarded to an automated voice messaging system. 9 '
  - text: 'Your call has been forwarded to an automatic voice message system. 7133 '
  - text: >-
      Triage Tronic Industries is not available. Record your message at the
      tone. 
  - text: >-
      Hi. This is Sid. I'm sorry I missed your call. Please leave me your name
      and number, and I will get back to you as soon as I can. Thank you, and
      have 
  - text: >-
      The Google subscriber you have called is not available. Please leave a
      message after the tone. 
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/paraphrase-mpnet-base-v2

SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
machine
  • 'Sorry. David Hello. Is not avail '
  • 'To Mozaz. Please wait as we try to connect you. '
  • 'Your call has been forwarded to an automated voice messaging system. 2 0 '
human
  • 'Good afternoon. Sesame Workshop. How can I help you today? '
  • 'This is Kenny. '
  • 'Hello? '

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("nikcheerla/amd-full-v1")
# Run inference
preds = model("Your call has been forwarded to an automated voice messaging system. 9 ")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 14.6725 207
Label Training Sample Count
human 1495
machine 6401

Training Hyperparameters

  • batch_size: (32, 32)
  • num_epochs: (3, 3)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 20
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: True
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0001 1 0.197 -
1.0 9870 0.0001 0.0271
2.0 19740 0.0 0.0272
3.0 29610 0.0 0.0264
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.1
  • Sentence Transformers: 2.2.2
  • Transformers: 4.35.2
  • PyTorch: 2.0.1+cu118
  • Datasets: 2.16.1
  • Tokenizers: 0.15.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}