metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: 'Your call has been forwarded to an automated voice messaging system. 9 '
- text: 'Your call has been forwarded to an automatic voice message system. 7133 '
- text: >-
Triage Tronic Industries is not available. Record your message at the
tone.
- text: >-
Hi. This is Sid. I'm sorry I missed your call. Please leave me your name
and number, and I will get back to you as soon as I can. Thank you, and
have
- text: >-
The Google subscriber you have called is not available. Please leave a
message after the tone.
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/paraphrase-mpnet-base-v2
SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
machine |
|
human |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("nikcheerla/amd-full-v1")
# Run inference
preds = model("Your call has been forwarded to an automated voice messaging system. 9 ")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 14.6725 | 207 |
Label | Training Sample Count |
---|---|
human | 1495 |
machine | 6401 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (3, 3)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: True
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0001 | 1 | 0.197 | - |
1.0 | 9870 | 0.0001 | 0.0271 |
2.0 | 19740 | 0.0 | 0.0272 |
3.0 | 29610 | 0.0 | 0.0264 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.1
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.0.1+cu118
- Datasets: 2.16.1
- Tokenizers: 0.15.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}