whisper-medium-uk / README.md
nikes64's picture
Update README.md
d22f5e7 verified
metadata
language:
  - uk
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_16_1
metrics:
  - wer
model-index:
  - name: Whisper Small Ukrainian
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 16.1
          type: mozilla-foundation/common_voice_16_1
          config: uk
          split: test
          args: 'config: uk, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 20.106509860483175

whisper-medium-uk

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 16.1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3673
  • Wer: 20.1065

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-06
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1947 0.94 1000 0.2269 22.7263
0.1034 1.89 2000 0.2102 20.6058
0.0572 2.83 3000 0.2192 20.3908
0.0261 3.77 4000 0.2483 21.0204
0.0112 4.72 5000 0.2758 21.1480
0.0058 5.66 6000 0.3166 20.3270
0.0026 6.6 7000 0.3268 20.5877
0.0017 7.55 8000 0.3483 20.0455
0.0006 8.49 9000 0.3635 20.0996
0.0005 9.43 10000 0.3673 20.1065

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.2.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2