Edit model card

nikoslefkos/rebert_trex_reformed_v3

This model is a fine-tuned version of distilbert-base-cased on trex for 250 labels. It achieves the following results on the evaluation set:

  • Train Loss: 0.4216
  • Train Accuracy: 0.8541
  • Validation Loss: 0.8042
  • Validation Accuracy: 0.7628
  • Epoch: 4

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': 0.01, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 1e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Epoch
1.4168 0.6536 0.9242 0.7294 0
0.8272 0.7506 0.8106 0.7534 1
0.6786 0.7826 0.7871 0.7587 2
0.5718 0.8100 0.7981 0.7571 3
0.4216 0.8541 0.8042 0.7628 4

Framework versions

  • Transformers 4.34.0
  • TensorFlow 2.13.0
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nikoslefkos/rebert_v3

Finetuned
(215)
this model