Edit model card

nikoslefkos/rebert_trex

This model is a fine-tuned version of distilbert-base-cased on relbert/t_rex.Containing 291 labels for examples with more than 100 occurences. It achieves the following results on the evaluation set:

  • Train Loss: 0.8598
  • Train Accuracy: 0.7326
  • Validation Loss: 1.0456
  • Validation Accuracy: 0.6906
  • Epoch: 3

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': 0.01, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Epoch
1.5343 0.6115 1.1212 0.6767 0
1.1175 0.6771 1.0503 0.6895 1
0.9745 0.7068 1.0405 0.6900 2
0.8598 0.7326 1.0456 0.6906 3

Framework versions

  • Transformers 4.33.0
  • TensorFlow 2.12.0
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
18
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nikoslefkos/relex

Finetuned
(222)
this model

Dataset used to train nikoslefkos/relex