YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Creation
from datasets import load_dataset
from transformers import AutoTokenizer
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
# Select model and load it.
MODEL_ID = "meta-llama/Llama-3.2-1B-Instruct"
model = SparseAutoModelForCausalLM.from_pretrained(
MODEL_ID,
device_map="auto",
torch_dtype="auto",
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
# Select calibration dataset.
DATASET_ID = "mgoin/ultrachat_2k"
DATASET_SPLIT = "train_sft"
# Select number of samples. 512 samples is a good place to start.
# Increasing the number of samples can improve accuracy.
NUM_CALIBRATION_SAMPLES = 512
MAX_SEQUENCE_LENGTH = 2048
# Load dataset and preprocess.
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))
def preprocess(example):
return {
"text": tokenizer.apply_chat_template(
example["messages"],
tokenize=False,
)
}
ds = ds.map(preprocess)
# Tokenize inputs.
def tokenize(sample):
return tokenizer(
sample["text"],
padding=False,
max_length=MAX_SEQUENCE_LENGTH,
truncation=True,
add_special_tokens=False,
)
ds = ds.map(tokenize, remove_columns=ds.column_names)
# Configure the quantization algorithm to run.
recipe = """
quantization_stage:
run_type: oneshot
quantization_modifiers:
GPTQModifier:
ignore: ["lm_head"]
config_groups:
group_0:
weights:
num_bits: 4
type: "int"
symmetric: true
strategy: "group"
group_size: 128
targets: [
"re:.*mlp.[^.]*_proj",
]
group_1:
weights:
num_bits: 8
type: "int"
symmetric: true
strategy: "channel"
targets: [
"re:.*self_attn.[^.]*_proj",
]
"""
# Apply algorithms.
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
)
# Save to disk compressed.
SAVE_DIR = MODEL_ID.split("/")[1] + "-GPTQ-nonuniform"
model.save_pretrained(SAVE_DIR)
tokenizer.save_pretrained(SAVE_DIR)
# Confirm generations of the quantized model look sane.
print("\n\n")
print("========== SAMPLE GENERATION ==============")
input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda")
output = model.generate(input_ids, max_new_tokens=100)
print(tokenizer.decode(output[0]))
print("==========================================\n\n")
- Downloads last month
- 6