|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- nomic-ai/gpt4all-j-prompt-generations |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
# Model Card for GPT4All-J |
|
|
|
An Apache-2 licensed chatbot trained over a massive curated corpus of assistant interactions including word problems, multi-turn dialogue, code, poems, songs, and stories. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
<!-- Provide a longer summary of what this model is. --> |
|
|
|
This model has been finetuned from [GPT-J](https://huggingface.co/EleutherAI/gpt-j-6B) |
|
|
|
- **Developed by:** [Nomic AI](https://home.nomic.ai) |
|
- **Model Type:** A finetuned GPT-J model on assistant style interaction data |
|
- **Language(s) (NLP):** English |
|
- **License:** Apache-2 |
|
- **Finetuned from model [optional]:** [GPT-J](https://huggingface.co/EleutherAI/gpt-j-6B) |
|
|
|
|
|
We have released several versions of our finetuned GPT-J model using [different dataset versions](https://huggingface.co/datasets/nomic-ai/gpt4all-j-prompt-generations) |
|
|
|
- v1.0: The original model trained on the v1.0 dataset |
|
- v1.1-breezy: Trained on afiltered dataset where we removed all instances of AI language model |
|
- v1.2-jazzy: Trained on a filtered dataset where we also removed instances like I'm sorry, I can't answer... and AI language model |
|
- v1.3-groovy: We added Dolly and ShareGPT to the v1.2 dataset and removed ~8% of the dataset in v1.2 that contained semantic duplicates using [Atlas](https://atlas.nomic.ai/). |
|
|
|
To download a model with a specific revision run |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM |
|
|
|
model = AutoModelForCausalLM.from_pretrained("nomic-ai/gpt4all-j", revision="v1.2-jazzy") |
|
``` |
|
|
|
Downloading without specifying `revision` defaults to `main`/`v1.0`. |
|
|
|
### Model Sources [optional] |
|
|
|
<!-- Provide the basic links for the model. --> |
|
|
|
- **Repository:** [https://github.com/nomic-ai/gpt4all](https://github.com/nomic-ai/gpt4all) |
|
- **Base Model Repository:** [https://github.com/kingoflolz/mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax) |
|
- **Paper [optional]:** [GPT4All-J: An Apache-2 Licensed Assistant-Style Chatbot](https://s3.amazonaws.com/static.nomic.ai/gpt4all/2023_GPT4All-J_Technical_Report_2.pdf) |
|
- **Demo [optional]:** [https://gpt4all.io/](https://gpt4all.io/) |
|
|
|
|
|
### Training Procedure |
|
GPT4All is made possible by our compute partner [Paperspace](https://www.paperspace.com/). |
|
|
|
Trained on a DGX cluster with 8 A100 80GB GPUs for ~12 hours. Using Deepspeed + Accelerate, we use a global batch size of 256 with a learning rate of 2e-5. More information can be found in the repo. |
|
|
|
|
|
### Results |
|
|
|
Results on common sense reasoning benchmarks |
|
|
|
``` |
|
| Model | BoolQ | PIQA | HellaSwag | WinoGrande | ARC-e | ARC-c | OBQA | Avg. | |
|
|:--------------------------|:--------:|:--------:|:---------:|:----------:|:--------:|:--------:|:--------:|:--------:| |
|
| GPT4All-J 6B v1.0 | 73.4 | 74.8 | 63.4 | 64.7 | 54.9 | 36.0 | 40.2 | 58.2 | |
|
| GPT4All-J v1.1-breezy | 74.0 | 75.1 | 63.2 | 63.6 | 55.4 | 34.9 | 38.4 | 57.8 | |
|
| GPT4All-J v1.2-jazzy | 74.8 | 74.9 | 63.6 | 63.8 | 56.6 | 35.3 | 41.0 | 58.6 | |
|
| GPT4All-J v1.3-groovy | 73.6 | 74.3 | 63.8 | 63.5 | 57.7 | 35.0 | 38.8 | 58.1 | |
|
| GPT4All-J Lora 6B | 68.6 | 75.8 | 66.2 | 63.5 | 56.4 | 35.7 | 40.2 | 58.1 | |
|
| GPT4All LLaMa Lora 7B | 73.1 | 77.6 | 72.1 | 67.8 | 51.1 | 40.4 | 40.2 | 60.3 | |
|
| GPT4All 13B snoozy | **83.3** | 79.2 | 75.0 | **71.3** | 60.9 | 44.2 | 43.4 | **65.3** | |
|
| Dolly 6B | 68.8 | 77.3 | 67.6 | 63.9 | 62.9 | 38.7 | 41.2 | 60.1 | |
|
| Dolly 12B | 56.7 | 75.4 | 71.0 | 62.2 | 64.6 | 38.5 | 40.4 | 58.4 | |
|
| Alpaca 7B | 73.9 | 77.2 | 73.9 | 66.1 | 59.8 | 43.3 | 43.4 | 62.4 | |
|
| Alpaca Lora 7B | 74.3 | **79.3** | 74.0 | 68.8 | 56.6 | 43.9 | 42.6 | 62.8 | |
|
| GPT-J 6.7B | 65.4 | 76.2 | 66.2 | 64.1 | 62.2 | 36.6 | 38.2 | 58.4 | |
|
| LLama 7B | 73.1 | 77.4 | 73.0 | 66.9 | 52.5 | 41.4 | 42.4 | 61.0 | |
|
| LLama 13B | 68.5 | 79.1 | 76.2 | 70.1 | 60.0 | **44.6** | 42.2 | 63.0 | |
|
| Pythia 6.7B | 63.5 | 76.3 | 64.0 | 61.1 | 61.3 | 35.2 | 37.2 | 57.0 | |
|
| Pythia 12B | 67.7 | 76.6 | 67.3 | 63.8 | 63.9 | 34.8 | 38 | 58.9 | |
|
| Fastchat T5 | 81.5 | 64.6 | 46.3 | 61.8 | 49.3 | 33.3 | 39.4 | 53.7 | |
|
| Fastchat Vicuña 7B | 76.6 | 77.2 | 70.7 | 67.3 | 53.5 | 41.2 | 40.8 | 61.0 | |
|
| Fastchat Vicuña 13B | 81.5 | 76.8 | 73.3 | 66.7 | 57.4 | 42.7 | 43.6 | 63.1 | |
|
| StableVicuña RLHF | 82.3 | 78.6 | 74.1 | 70.9 | 61.0 | 43.5 | **44.4** | 65.0 | |
|
| StableLM Tuned | 62.5 | 71.2 | 53.6 | 54.8 | 52.4 | 31.1 | 33.4 | 51.3 | |
|
| StableLM Base | 60.1 | 67.4 | 41.2 | 50.1 | 44.9 | 27.0 | 32.0 | 42.2 | |
|
| Koala 13B | 76.5 | 77.9 | 72.6 | 68.8 | 54.3 | 41.0 | 42.8 | 62.0 | |
|
| Open Assistant Pythia 12B | 67.9 | 78.0 | 68.1 | 65.0 | 64.2 | 40.4 | 43.2 | 61.0 | |
|
| Mosaic mpt-7b | 74.8 | **79.3** | **76.3** | 68.6 | **70.0** | 42.2 | 42.6 | 64.8 | |
|
| text-davinci-003 | 88.1 | 83.8 | 83.4 | 75.8 | 83.9 | 63.9 | 51.0 | 75.7 | |
|
``` |