Edit model card

This model the 4-bit quantized version of the ministral-8B by Mistral-AI.Please follow the following instruction to run the model on your device:

There are multiple ways to infer the model. Firstly, let's install llama.cpp and use it for the inference

  1. Install
git clone https://github.com/ggerganov/llama.cpp
!mkdir llama.cpp/build && cd llama.cpp/build && cmake .. && cmake --build . --config Release
  1. Inference
./llama.cpp/build/bin/llama-cli -m ./ministral-8b_Q4_K_M.gguf -cnv -p "You are a helpful assistant"

Here, you can interact with model from your terminal.

Alternatively, we can use python binding of the llama.cpp to run the model on both CPU and GPU.

  1. Install
pip install --no-cache-dir llama-cpp-python==0.2.85 --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu122
  1. Inference on CPU
from llama_cpp import Llama

model_path = "./ministral-8b_Q4_K_M.gguf"
llm = Llama(model_path=model_path, n_threads=8, verbose=False)

prompt = "What should I do when my eyes are dry?"
output = llm(
        prompt=f"<|user|>\n{prompt}<|end|>\n<|assistant|>",
        max_tokens=4096,
        stop=["<|end|>"],
        echo=False,  # Whether to echo the prompt
)
print(output)
  1. Inference on GPU
from llama_cpp import Llama

model_path = "./ministral-8b_Q4_K_M.gguf"
llm = Llama(model_path=model_path, n_threads=8, n_gpu_layers=-1, verbose=False)

prompt = "What should I do when my eyes are dry?"
output = llm(
        prompt=f"<|user|>\n{prompt}<|end|>\n<|assistant|>",
        max_tokens=4096,
        stop=["<|end|>"],
        echo=False,  # Whether to echo the prompt
)
print(output)
Downloads last month
106
GGUF
Model size
8.02B params
Architecture
llama

4-bit

Inference API
Unable to determine this model's library. Check the docs .

Model tree for np-n/ministral-8b_Q4_K_M.gguf

Quantized
(17)
this model