Text-to-Image
Diffusers
English
flux
lora
demo-tarot / README.md
nsarrazin's picture
nsarrazin HF staff
Update README.md
758b6c3 verified
|
raw
history blame
1.2 kB
metadata
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
  - en
tags:
  - flux
  - diffusers
  - lora
base_model: black-forest-labs/FLUX.1-dev
pipeline_tag: text-to-image
instance_prompt: TOK
inference:
  parameters:
    width: 568
    height: 830
datasets:
  - multimodalart/1920-raider-waite-tarot-public-domain

Demo Tarot

Trained on Replicate using:

https://replicate.com/ostris/flux-dev-lora-trainer/train

Trigger words

You should use TOK to trigger the image generation.

Use it with the 🧨 diffusers library

from diffusers import AutoPipelineForText2Image
import torch

pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('nsarrazin/demo-tarot', weight_name='lora.safetensors')
image = pipeline('your prompt').images[0]

For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers