Edit model card
A newer version of this model is available: numind/NuExtract-1.5

⚠️ NOTE: This model is out-dated. Find the updated version here

Structure Extraction Model by NuMind πŸ”₯

NuExtract_tiny is a version of Qwen1.5-0.5, fine-tuned on a private high-quality synthetic dataset for information extraction. To use the model, provide an input text (less than 2000 tokens) and a JSON template describing the information you need to extract.

Note: This model is purely extractive, so all text output by the model is present as is in the original text. You can also provide an example of output formatting to help the model understand your task more precisely.

Note: While this model provides good 0 shot performance, it is intended to be fine-tuned on a specific task (>=30 examples).

We also provide a base (3.8B) and large(7B) version of this model: NuExtract and NuExtract-large

Checkout other models by NuMind:

Usage

To use the model:

import json
from transformers import AutoModelForCausalLM, AutoTokenizer


def predict_NuExtract(model, tokenizer, text, schema, example=["","",""]):
    schema = json.dumps(json.loads(schema), indent=4)
    input_llm =  "<|input|>\n### Template:\n" +  schema + "\n"
    for i in example:
      if i != "":
          input_llm += "### Example:\n"+ json.dumps(json.loads(i), indent=4)+"\n"
    
    input_llm +=  "### Text:\n"+text +"\n<|output|>\n"
    input_ids = tokenizer(input_llm, return_tensors="pt", truncation=True, max_length=4000).to("cuda")

    output = tokenizer.decode(model.generate(**input_ids)[0], skip_special_tokens=True)
    return output.split("<|output|>")[1].split("<|end-output|>")[0]


model = AutoModelForCausalLM.from_pretrained("numind/NuExtract-tiny", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("numind/NuExtract-tiny", trust_remote_code=True)

model.to("cuda")

model.eval()

text = """We introduce Mistral 7B, a 7–billion-parameter language model engineered for
superior performance and efficiency. Mistral 7B outperforms the best open 13B
model (Llama 2) across all evaluated benchmarks, and the best released 34B
model (Llama 1) in reasoning, mathematics, and code generation. Our model
leverages grouped-query attention (GQA) for faster inference, coupled with sliding
window attention (SWA) to effectively handle sequences of arbitrary length with a
reduced inference cost. We also provide a model fine-tuned to follow instructions,
Mistral 7B – Instruct, that surpasses Llama 2 13B – chat model both on human and
automated benchmarks. Our models are released under the Apache 2.0 license.
Code: https://github.com/mistralai/mistral-src
Webpage: https://mistral.ai/news/announcing-mistral-7b/"""

schema = """{
    "Model": {
        "Name": "",
        "Number of parameters": "",
        "Number of max token": "",
        "Architecture": []
    },
    "Usage": {
        "Use case": [],
        "Licence": ""
    }
}"""

prediction = predict_NuExtract(model, tokenizer, text, schema, example=["","",""])
print(prediction)
Downloads last month
29,463
Safetensors
Model size
464M params
Tensor type
F32
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for numind/NuExtract-tiny

Base model

Qwen/Qwen1.5-0.5B
Finetuned
(15)
this model
Finetunes
7 models
Quantizations
5 models

Space using numind/NuExtract-tiny 1

Collection including numind/NuExtract-tiny