metadata
license: mit
language:
- en
- fr
- de
- it
- es
- pt
- pl
- nl
- ru
pipeline_tag: token-classification
inference: false
tags:
- token-classification
- entity-recognition
- foundation-model
- feature-extraction
- mBERT
- Multilingual Bert
- BERT
- generic
SOTA Entity Recognition Multilingual Foundation Model by NuMind 🔥
This model provides the best embedding for the Entity Recognition task and supports 9+ languages.
Checkout other models by NuMind:
- SOTA Entity Recognition Foundation Model in English: link
- SOTA Sentiment Analysis Foundation Model: English, Multilingual
About
Multilingual BERT finetunned on an artificially annotated multilingual subset of Oscar dataset. This model provides domain & language independent embedding for Entity Recognition Task. We fine-tunned it only on 9 languages but the model can generalize over other languages that are supported by the Multilingual BERT.
Metrics:
Read more about evaluation protocol & datasets in our blog post
Model | F1 macro |
---|---|
bert-base-multilingual-cased | 0.5206 |
ours | 0.5892 |
ours + two emb | 0.6231 |
Usage
Embeddings can be used out of the box or fine-tuned on specific datasets.
Get embeddings:
import torch
import transformers
model = transformers.AutoModel.from_pretrained(
'numind/NuNER-multilingual-v0.1',
output_hidden_states=True,
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
'numind/NuNER-multilingual-v0.1',
)
text = [
"NuMind is an AI company based in Paris and USA.",
"NuMind est une entreprise d'IA basée à Paris et aux États-Unis.",
"See other models from us on https://huggingface.co/numind"
]
encoded_input = tokenizer(
text,
return_tensors='pt',
padding=True,
truncation=True
)
output = model(**encoded_input)
# two emb trick: for better quality
emb = torch.cat(
(output.hidden_states[-1], output.hidden_states[-7]),
dim=2
)
# single emb: for better speed
# emb = output.hidden_states[-1]
Citation
@misc{bogdanov2024nuner,
title={NuNER: Entity Recognition Encoder Pre-training via LLM-Annotated Data},
author={Sergei Bogdanov and Alexandre Constantin and Timothée Bernard and Benoit Crabbé and Etienne Bernard},
year={2024},
eprint={2402.15343},
archivePrefix={arXiv},
primaryClass={cs.CL}
}