|
--- |
|
license: bigscience-openrail-m |
|
library_name: transformers |
|
tags: |
|
- code |
|
- gpt_bigcode |
|
datasets: |
|
- nuprl/MultiPL-T |
|
metrics: |
|
- code_eval |
|
model-index: |
|
- name: MultiPLCoder-15b-OCaml |
|
results: |
|
- task: |
|
type: text-generation |
|
dataset: |
|
name: MultiPL-HumanEval (Lua) |
|
type: nuprl/MultiPL-E |
|
metrics: |
|
- type: pass@1 |
|
value: 0.31 |
|
name: pass@1 |
|
verified: true |
|
- type: pass@1 |
|
value: 0.21 |
|
name: pass@1 |
|
verified: true |
|
- type: pass@1 |
|
value: 0.199 |
|
name: pass@1 |
|
verified: true |
|
--- |
|
# MultiPLCoder-15b |
|
|
|
15 billion parameter version of MultiPLCoder, a set of StarCoder-based models finetuned on the [MultiPL-T dataset](https://huggingface.co/datasets/nuprl/MultiPL-T). |
|
These models are state-of-the-art at low-resource languages, such as: Lua, Racket, and OCaml. |
|
|
|
This 15 billion parameter model is the most capable of the MultiPLCoder family. However, it requires a dedicated GPU for inference. |
|
For a smaller model that fits on the CPU, check out [MultiPLCoder-1b](https://huggingface.co/nuprl/MultiPLCoder-1b). |
|
|
|
|
|
## Language Revision Index |
|
|
|
This is the revision index for the best-performing models for their respective langauge. |
|
|
|
| Langauge | Revision ID | Epoch | |
|
| ------------- | ----------- | ----- | |
|
| Lua | `6069aa54dd554404dd18fccdf5dedd56b8088e74` | 4 | |
|
| Racket | `f0c77c06482f436f469007f20d731cb9dd73d609` | 8 | |
|
| OCaml | `e7babda985786810707200ff885df6105de7dc56` | 4 | |
|
|
|
## Usage |
|
|
|
To utilize one of the models in this repository, you must first select a commit revision for that model from the table above. |
|
For example, to use the Lua model: |
|
```py |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
tokenizer = AutoTokenizer.from_pretrained("nuprl/MultiPLCoder-15b") |
|
lua_revision="6069aa54dd554404dd18fccdf5dedd56b8088e74" |
|
model = AutoModelForCausalLM.from_pretrained("nuprl/MultiPLCoder-15b", revision=lua_revision).cuda() |
|
``` |
|
|
|
Note that the model's default configuration does not enable caching, therefore you must specify to use the cache on generation. |
|
```py |
|
toks = tokenizer.encode("-- Fibonacci iterative", return_tensors="pt").cuda() |
|
out = model.generate(toks, use_cache=True, do_sample=True, temperature=0.2, top_p=0.95, max_length=256) |
|
print(tokenizer.decode(out[0], skip_special_tokens=True)) |
|
``` |
|
``` |
|
-- Fibonacci iterative. |
|
local function fib_iterative(n) |
|
if n == 0 or n == 1 then |
|
return n |
|
end |
|
local previous, current = 0, 1 |
|
for _ = 2, n do |
|
previous, current = current, current + previous |
|
end |
|
return current |
|
end |
|
``` |