NV-Embed-v2 / README.md
tomaarsen's picture
tomaarsen HF staff
Add the Sentence Transformers tag
5cb301c verified
|
raw
history blame
60 kB
metadata
tags:
  - mteb
  - sentence-transformers
model-index:
  - name: NV-Embed-v2
    results:
      - dataset:
          config: en
          name: MTEB AmazonCounterfactualClassification (en)
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
          split: test
          type: mteb/amazon_counterfactual
        metrics:
          - type: accuracy
            value: 94.28358208955224
          - type: accuracy_stderr
            value: 0.40076780842082305
          - type: ap
            value: 76.49097318319616
          - type: ap_stderr
            value: 1.2418692675183929
          - type: f1
            value: 91.41982003001168
          - type: f1_stderr
            value: 0.5043921413093579
          - type: main_score
            value: 94.28358208955224
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB AmazonPolarityClassification
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
          split: test
          type: mteb/amazon_polarity
        metrics:
          - type: accuracy
            value: 97.74185000000001
          - type: accuracy_stderr
            value: 0.07420471683120942
          - type: ap
            value: 96.4737144875525
          - type: ap_stderr
            value: 0.2977518241541558
          - type: f1
            value: 97.7417581594921
          - type: f1_stderr
            value: 0.07428763617010377
          - type: main_score
            value: 97.74185000000001
        task:
          type: Classification
      - dataset:
          config: en
          name: MTEB AmazonReviewsClassification (en)
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
          split: test
          type: mteb/amazon_reviews_multi
        metrics:
          - type: accuracy
            value: 63.96000000000001
          - type: accuracy_stderr
            value: 1.815555011559825
          - type: f1
            value: 62.49361841640459
          - type: f1_stderr
            value: 2.829339314126457
          - type: main_score
            value: 63.96000000000001
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB ArguAna
          revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
          split: test
          type: mteb/arguana
        metrics:
          - type: map_at_1
            value: 46.515
          - type: map_at_10
            value: 62.392
          - type: map_at_100
            value: 62.732
          - type: map_at_1000
            value: 62.733000000000004
          - type: map_at_3
            value: 58.701
          - type: map_at_5
            value: 61.027
          - type: mrr_at_1
            value: 0
          - type: mrr_at_10
            value: 0
          - type: mrr_at_100
            value: 0
          - type: mrr_at_1000
            value: 0
          - type: mrr_at_3
            value: 0
          - type: mrr_at_5
            value: 0
          - type: ndcg_at_1
            value: 46.515
          - type: ndcg_at_10
            value: 70.074
          - type: ndcg_at_100
            value: 71.395
          - type: ndcg_at_1000
            value: 71.405
          - type: ndcg_at_3
            value: 62.643
          - type: ndcg_at_5
            value: 66.803
          - type: precision_at_1
            value: 46.515
          - type: precision_at_10
            value: 9.41
          - type: precision_at_100
            value: 0.996
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 24.68
          - type: precision_at_5
            value: 16.814
          - type: recall_at_1
            value: 46.515
          - type: recall_at_10
            value: 94.097
          - type: recall_at_100
            value: 99.57300000000001
          - type: recall_at_1000
            value: 99.644
          - type: recall_at_3
            value: 74.03999999999999
          - type: recall_at_5
            value: 84.068
          - type: main_score
            value: 70.074
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB ArxivClusteringP2P
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
          split: test
          type: mteb/arxiv-clustering-p2p
        metrics:
          - type: main_score
            value: 55.79933795955242
          - type: v_measure
            value: 55.79933795955242
          - type: v_measure_std
            value: 14.575108141916148
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB ArxivClusteringS2S
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
          split: test
          type: mteb/arxiv-clustering-s2s
        metrics:
          - type: main_score
            value: 51.262845995850334
          - type: v_measure
            value: 51.262845995850334
          - type: v_measure_std
            value: 14.727824473104173
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB AskUbuntuDupQuestions
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
          split: test
          type: mteb/askubuntudupquestions-reranking
        metrics:
          - type: map
            value: 67.46477327480808
          - type: mrr
            value: 79.50160488941653
          - type: main_score
            value: 67.46477327480808
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB BIOSSES
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
          split: test
          type: mteb/biosses-sts
        metrics:
          - type: cosine_pearson
            value: 89.74311007980987
          - type: cosine_spearman
            value: 87.41644967443246
          - type: manhattan_pearson
            value: 88.57457108347744
          - type: manhattan_spearman
            value: 87.59295972042997
          - type: euclidean_pearson
            value: 88.27108977118459
          - type: euclidean_spearman
            value: 87.41644967443246
          - type: main_score
            value: 87.41644967443246
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB Banking77Classification
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
          split: test
          type: mteb/banking77
        metrics:
          - type: accuracy
            value: 92.41558441558443
          - type: accuracy_stderr
            value: 0.37701502251934443
          - type: f1
            value: 92.38130170447671
          - type: f1_stderr
            value: 0.39115151225617767
          - type: main_score
            value: 92.41558441558443
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB BiorxivClusteringP2P
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
          split: test
          type: mteb/biorxiv-clustering-p2p
        metrics:
          - type: main_score
            value: 54.08649516394218
          - type: v_measure
            value: 54.08649516394218
          - type: v_measure_std
            value: 0.5303233693045373
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB BiorxivClusteringS2S
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
          split: test
          type: mteb/biorxiv-clustering-s2s
        metrics:
          - type: main_score
            value: 49.60352214167779
          - type: v_measure
            value: 49.60352214167779
          - type: v_measure_std
            value: 0.7176198612516721
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB CQADupstackRetrieval
          revision: 46989137a86843e03a6195de44b09deda022eec7
          split: test
          type: CQADupstackRetrieval_is_a_combined_dataset
        metrics:
          - type: map_at_1
            value: 31.913249999999998
          - type: map_at_10
            value: 43.87733333333334
          - type: map_at_100
            value: 45.249916666666664
          - type: map_at_1000
            value: 45.350583333333326
          - type: map_at_3
            value: 40.316833333333335
          - type: map_at_5
            value: 42.317083333333336
          - type: mrr_at_1
            value: 0
          - type: mrr_at_10
            value: 0
          - type: mrr_at_100
            value: 0
          - type: mrr_at_1000
            value: 0
          - type: mrr_at_3
            value: 0
          - type: mrr_at_5
            value: 0
          - type: ndcg_at_1
            value: 38.30616666666667
          - type: ndcg_at_10
            value: 50.24175000000001
          - type: ndcg_at_100
            value: 55.345333333333336
          - type: ndcg_at_1000
            value: 56.91225000000001
          - type: ndcg_at_3
            value: 44.67558333333333
          - type: ndcg_at_5
            value: 47.32333333333334
          - type: precision_at_1
            value: 38.30616666666667
          - type: precision_at_10
            value: 9.007416666666666
          - type: precision_at_100
            value: 1.3633333333333333
          - type: precision_at_1000
            value: 0.16691666666666666
          - type: precision_at_3
            value: 20.895666666666667
          - type: precision_at_5
            value: 14.871666666666666
          - type: recall_at_1
            value: 31.913249999999998
          - type: recall_at_10
            value: 64.11891666666666
          - type: recall_at_100
            value: 85.91133333333333
          - type: recall_at_1000
            value: 96.28225
          - type: recall_at_3
            value: 48.54749999999999
          - type: recall_at_5
            value: 55.44283333333334
          - type: main_score
            value: 50.24175000000001
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB ClimateFEVER
          revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
          split: test
          type: mteb/climate-fever
        metrics:
          - type: map_at_1
            value: 19.556
          - type: map_at_10
            value: 34.623
          - type: map_at_100
            value: 36.97
          - type: map_at_1000
            value: 37.123
          - type: map_at_3
            value: 28.904999999999998
          - type: map_at_5
            value: 31.955
          - type: mrr_at_1
            value: 0
          - type: mrr_at_10
            value: 0
          - type: mrr_at_100
            value: 0
          - type: mrr_at_1000
            value: 0
          - type: mrr_at_3
            value: 0
          - type: mrr_at_5
            value: 0
          - type: ndcg_at_1
            value: 44.104
          - type: ndcg_at_10
            value: 45.388
          - type: ndcg_at_100
            value: 52.793
          - type: ndcg_at_1000
            value: 55.108999999999995
          - type: ndcg_at_3
            value: 38.604
          - type: ndcg_at_5
            value: 40.806
          - type: precision_at_1
            value: 44.104
          - type: precision_at_10
            value: 14.143
          - type: precision_at_100
            value: 2.2190000000000003
          - type: precision_at_1000
            value: 0.266
          - type: precision_at_3
            value: 29.316
          - type: precision_at_5
            value: 21.98
          - type: recall_at_1
            value: 19.556
          - type: recall_at_10
            value: 52.120999999999995
          - type: recall_at_100
            value: 76.509
          - type: recall_at_1000
            value: 89.029
          - type: recall_at_3
            value: 34.919
          - type: recall_at_5
            value: 42.18
          - type: main_score
            value: 45.388
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB DBPedia
          revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
          split: test
          type: mteb/dbpedia
        metrics:
          - type: map_at_1
            value: 10.714
          - type: map_at_10
            value: 25.814999999999998
          - type: map_at_100
            value: 37.845
          - type: map_at_1000
            value: 39.974
          - type: map_at_3
            value: 17.201
          - type: map_at_5
            value: 21.062
          - type: mrr_at_1
            value: 0
          - type: mrr_at_10
            value: 0
          - type: mrr_at_100
            value: 0
          - type: mrr_at_1000
            value: 0
          - type: mrr_at_3
            value: 0
          - type: mrr_at_5
            value: 0
          - type: ndcg_at_1
            value: 66
          - type: ndcg_at_10
            value: 53.496
          - type: ndcg_at_100
            value: 58.053
          - type: ndcg_at_1000
            value: 64.886
          - type: ndcg_at_3
            value: 57.656
          - type: ndcg_at_5
            value: 55.900000000000006
          - type: precision_at_1
            value: 77.25
          - type: precision_at_10
            value: 43.65
          - type: precision_at_100
            value: 13.76
          - type: precision_at_1000
            value: 2.5940000000000003
          - type: precision_at_3
            value: 61
          - type: precision_at_5
            value: 54.65
          - type: recall_at_1
            value: 10.714
          - type: recall_at_10
            value: 31.173000000000002
          - type: recall_at_100
            value: 63.404
          - type: recall_at_1000
            value: 85.874
          - type: recall_at_3
            value: 18.249000000000002
          - type: recall_at_5
            value: 23.69
          - type: main_score
            value: 53.496
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB EmotionClassification
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
          split: test
          type: mteb/emotion
        metrics:
          - type: accuracy
            value: 93.38499999999999
          - type: accuracy_stderr
            value: 0.13793114224133846
          - type: f1
            value: 90.12141028353496
          - type: f1_stderr
            value: 0.174640257706043
          - type: main_score
            value: 93.38499999999999
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB FEVER
          revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
          split: test
          type: mteb/fever
        metrics:
          - type: map_at_1
            value: 84.66900000000001
          - type: map_at_10
            value: 91.52799999999999
          - type: map_at_100
            value: 91.721
          - type: map_at_1000
            value: 91.73
          - type: map_at_3
            value: 90.752
          - type: map_at_5
            value: 91.262
          - type: mrr_at_1
            value: 0
          - type: mrr_at_10
            value: 0
          - type: mrr_at_100
            value: 0
          - type: mrr_at_1000
            value: 0
          - type: mrr_at_3
            value: 0
          - type: mrr_at_5
            value: 0
          - type: ndcg_at_1
            value: 91.20899999999999
          - type: ndcg_at_10
            value: 93.74900000000001
          - type: ndcg_at_100
            value: 94.279
          - type: ndcg_at_1000
            value: 94.408
          - type: ndcg_at_3
            value: 92.923
          - type: ndcg_at_5
            value: 93.376
          - type: precision_at_1
            value: 91.20899999999999
          - type: precision_at_10
            value: 11.059
          - type: precision_at_100
            value: 1.1560000000000001
          - type: precision_at_1000
            value: 0.11800000000000001
          - type: precision_at_3
            value: 35.129
          - type: precision_at_5
            value: 21.617
          - type: recall_at_1
            value: 84.66900000000001
          - type: recall_at_10
            value: 97.03399999999999
          - type: recall_at_100
            value: 98.931
          - type: recall_at_1000
            value: 99.65899999999999
          - type: recall_at_3
            value: 94.76299999999999
          - type: recall_at_5
            value: 95.968
          - type: main_score
            value: 93.74900000000001
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB FiQA2018
          revision: 27a168819829fe9bcd655c2df245fb19452e8e06
          split: test
          type: mteb/fiqa
        metrics:
          - type: map_at_1
            value: 34.866
          - type: map_at_10
            value: 58.06099999999999
          - type: map_at_100
            value: 60.028999999999996
          - type: map_at_1000
            value: 60.119
          - type: map_at_3
            value: 51.304
          - type: map_at_5
            value: 55.054
          - type: mrr_at_1
            value: 0
          - type: mrr_at_10
            value: 0
          - type: mrr_at_100
            value: 0
          - type: mrr_at_1000
            value: 0
          - type: mrr_at_3
            value: 0
          - type: mrr_at_5
            value: 0
          - type: ndcg_at_1
            value: 64.815
          - type: ndcg_at_10
            value: 65.729
          - type: ndcg_at_100
            value: 71.14
          - type: ndcg_at_1000
            value: 72.336
          - type: ndcg_at_3
            value: 61.973
          - type: ndcg_at_5
            value: 62.858000000000004
          - type: precision_at_1
            value: 64.815
          - type: precision_at_10
            value: 17.87
          - type: precision_at_100
            value: 2.373
          - type: precision_at_1000
            value: 0.258
          - type: precision_at_3
            value: 41.152
          - type: precision_at_5
            value: 29.568
          - type: recall_at_1
            value: 34.866
          - type: recall_at_10
            value: 72.239
          - type: recall_at_100
            value: 91.19
          - type: recall_at_1000
            value: 98.154
          - type: recall_at_3
            value: 56.472
          - type: recall_at_5
            value: 63.157
          - type: main_score
            value: 65.729
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB HotpotQA
          revision: ab518f4d6fcca38d87c25209f94beba119d02014
          split: test
          type: mteb/hotpotqa
        metrics:
          - type: map_at_1
            value: 44.651999999999994
          - type: map_at_10
            value: 79.95100000000001
          - type: map_at_100
            value: 80.51700000000001
          - type: map_at_1000
            value: 80.542
          - type: map_at_3
            value: 77.008
          - type: map_at_5
            value: 78.935
          - type: mrr_at_1
            value: 0
          - type: mrr_at_10
            value: 0
          - type: mrr_at_100
            value: 0
          - type: mrr_at_1000
            value: 0
          - type: mrr_at_3
            value: 0
          - type: mrr_at_5
            value: 0
          - type: ndcg_at_1
            value: 89.305
          - type: ndcg_at_10
            value: 85.479
          - type: ndcg_at_100
            value: 87.235
          - type: ndcg_at_1000
            value: 87.669
          - type: ndcg_at_3
            value: 81.648
          - type: ndcg_at_5
            value: 83.88600000000001
          - type: precision_at_1
            value: 89.305
          - type: precision_at_10
            value: 17.807000000000002
          - type: precision_at_100
            value: 1.9140000000000001
          - type: precision_at_1000
            value: 0.197
          - type: precision_at_3
            value: 53.756
          - type: precision_at_5
            value: 34.018
          - type: recall_at_1
            value: 44.651999999999994
          - type: recall_at_10
            value: 89.034
          - type: recall_at_100
            value: 95.719
          - type: recall_at_1000
            value: 98.535
          - type: recall_at_3
            value: 80.635
          - type: recall_at_5
            value: 85.044
          - type: main_score
            value: 85.479
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB ImdbClassification
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
          split: test
          type: mteb/imdb
        metrics:
          - type: accuracy
            value: 97.1376
          - type: accuracy_stderr
            value: 0.04571914259913447
          - type: ap
            value: 95.92783808558808
          - type: ap_stderr
            value: 0.05063782483358255
          - type: f1
            value: 97.13755519177172
          - type: f1_stderr
            value: 0.04575943074086138
          - type: main_score
            value: 97.1376
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB MSMARCO
          revision: c5a29a104738b98a9e76336939199e264163d4a0
          split: dev
          type: mteb/msmarco
        metrics:
          - type: map_at_1
            value: 0
          - type: map_at_10
            value: 38.342
          - type: map_at_100
            value: 0
          - type: map_at_1000
            value: 0
          - type: map_at_3
            value: 0
          - type: map_at_5
            value: 0
          - type: mrr_at_1
            value: 0
          - type: mrr_at_10
            value: 0
          - type: mrr_at_100
            value: 0
          - type: mrr_at_1000
            value: 0
          - type: mrr_at_3
            value: 0
          - type: mrr_at_5
            value: 0
          - type: ndcg_at_1
            value: 0
          - type: ndcg_at_10
            value: 45.629999999999995
          - type: ndcg_at_100
            value: 0
          - type: ndcg_at_1000
            value: 0
          - type: ndcg_at_3
            value: 0
          - type: ndcg_at_5
            value: 0
          - type: precision_at_1
            value: 0
          - type: precision_at_10
            value: 7.119000000000001
          - type: precision_at_100
            value: 0
          - type: precision_at_1000
            value: 0
          - type: precision_at_3
            value: 0
          - type: precision_at_5
            value: 0
          - type: recall_at_1
            value: 0
          - type: recall_at_10
            value: 67.972
          - type: recall_at_100
            value: 0
          - type: recall_at_1000
            value: 0
          - type: recall_at_3
            value: 0
          - type: recall_at_5
            value: 0
          - type: main_score
            value: 45.629999999999995
        task:
          type: Retrieval
      - dataset:
          config: en
          name: MTEB MTOPDomainClassification (en)
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
          split: test
          type: mteb/mtop_domain
        metrics:
          - type: accuracy
            value: 99.24988600091199
          - type: accuracy_stderr
            value: 0.04496826931900734
          - type: f1
            value: 99.15933275095276
          - type: f1_stderr
            value: 0.05565039139747446
          - type: main_score
            value: 99.24988600091199
        task:
          type: Classification
      - dataset:
          config: en
          name: MTEB MTOPIntentClassification (en)
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
          split: test
          type: mteb/mtop_intent
        metrics:
          - type: accuracy
            value: 94.3684450524396
          - type: accuracy_stderr
            value: 0.8436548701322188
          - type: f1
            value: 77.33022623133307
          - type: f1_stderr
            value: 0.9228425861187275
          - type: main_score
            value: 94.3684450524396
        task:
          type: Classification
      - dataset:
          config: en
          name: MTEB MassiveIntentClassification (en)
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
          split: test
          type: mteb/amazon_massive_intent
        metrics:
          - type: accuracy
            value: 86.09616677874916
          - type: accuracy_stderr
            value: 0.9943208055590853
          - type: f1
            value: 83.4902056490062
          - type: f1_stderr
            value: 0.7626189310074184
          - type: main_score
            value: 86.09616677874916
        task:
          type: Classification
      - dataset:
          config: en
          name: MTEB MassiveScenarioClassification (en)
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
          split: test
          type: mteb/amazon_massive_scenario
        metrics:
          - type: accuracy
            value: 92.17215870880968
          - type: accuracy_stderr
            value: 0.25949941333658166
          - type: f1
            value: 91.36757392422702
          - type: f1_stderr
            value: 0.29139507298154815
          - type: main_score
            value: 92.17215870880968
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB MedrxivClusteringP2P
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
          split: test
          type: mteb/medrxiv-clustering-p2p
        metrics:
          - type: main_score
            value: 46.09497344077905
          - type: v_measure
            value: 46.09497344077905
          - type: v_measure_std
            value: 1.44871520869784
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB MedrxivClusteringS2S
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
          split: test
          type: mteb/medrxiv-clustering-s2s
        metrics:
          - type: main_score
            value: 44.861049989560684
          - type: v_measure
            value: 44.861049989560684
          - type: v_measure_std
            value: 1.432199293162203
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB MindSmallReranking
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
          split: test
          type: mteb/mind_small
        metrics:
          - type: map
            value: 31.75936162919999
          - type: mrr
            value: 32.966812736541236
          - type: main_score
            value: 31.75936162919999
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB NFCorpus
          revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
          split: test
          type: mteb/nfcorpus
        metrics:
          - type: map_at_1
            value: 7.893999999999999
          - type: map_at_10
            value: 17.95
          - type: map_at_100
            value: 23.474
          - type: map_at_1000
            value: 25.412000000000003
          - type: map_at_3
            value: 12.884
          - type: map_at_5
            value: 15.171000000000001
          - type: mrr_at_1
            value: 0
          - type: mrr_at_10
            value: 0
          - type: mrr_at_100
            value: 0
          - type: mrr_at_1000
            value: 0
          - type: mrr_at_3
            value: 0
          - type: mrr_at_5
            value: 0
          - type: ndcg_at_1
            value: 55.728
          - type: ndcg_at_10
            value: 45.174
          - type: ndcg_at_100
            value: 42.18
          - type: ndcg_at_1000
            value: 50.793
          - type: ndcg_at_3
            value: 50.322
          - type: ndcg_at_5
            value: 48.244
          - type: precision_at_1
            value: 57.276
          - type: precision_at_10
            value: 33.437
          - type: precision_at_100
            value: 10.671999999999999
          - type: precision_at_1000
            value: 2.407
          - type: precision_at_3
            value: 46.646
          - type: precision_at_5
            value: 41.672
          - type: recall_at_1
            value: 7.893999999999999
          - type: recall_at_10
            value: 22.831000000000003
          - type: recall_at_100
            value: 43.818
          - type: recall_at_1000
            value: 75.009
          - type: recall_at_3
            value: 14.371
          - type: recall_at_5
            value: 17.752000000000002
          - type: main_score
            value: 45.174
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB NQ
          revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
          split: test
          type: mteb/nq
        metrics:
          - type: map_at_1
            value: 49.351
          - type: map_at_10
            value: 66.682
          - type: map_at_100
            value: 67.179
          - type: map_at_1000
            value: 67.18499999999999
          - type: map_at_3
            value: 62.958999999999996
          - type: map_at_5
            value: 65.364
          - type: mrr_at_1
            value: 0
          - type: mrr_at_10
            value: 0
          - type: mrr_at_100
            value: 0
          - type: mrr_at_1000
            value: 0
          - type: mrr_at_3
            value: 0
          - type: mrr_at_5
            value: 0
          - type: ndcg_at_1
            value: 55.417
          - type: ndcg_at_10
            value: 73.568
          - type: ndcg_at_100
            value: 75.35
          - type: ndcg_at_1000
            value: 75.478
          - type: ndcg_at_3
            value: 67.201
          - type: ndcg_at_5
            value: 70.896
          - type: precision_at_1
            value: 55.417
          - type: precision_at_10
            value: 11.036999999999999
          - type: precision_at_100
            value: 1.204
          - type: precision_at_1000
            value: 0.121
          - type: precision_at_3
            value: 29.654000000000003
          - type: precision_at_5
            value: 20.006
          - type: recall_at_1
            value: 49.351
          - type: recall_at_10
            value: 91.667
          - type: recall_at_100
            value: 98.89
          - type: recall_at_1000
            value: 99.812
          - type: recall_at_3
            value: 75.715
          - type: recall_at_5
            value: 84.072
          - type: main_score
            value: 73.568
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB QuoraRetrieval
          revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
          split: test
          type: mteb/quora
        metrics:
          - type: map_at_1
            value: 71.358
          - type: map_at_10
            value: 85.474
          - type: map_at_100
            value: 86.101
          - type: map_at_1000
            value: 86.114
          - type: map_at_3
            value: 82.562
          - type: map_at_5
            value: 84.396
          - type: mrr_at_1
            value: 0
          - type: mrr_at_10
            value: 0
          - type: mrr_at_100
            value: 0
          - type: mrr_at_1000
            value: 0
          - type: mrr_at_3
            value: 0
          - type: mrr_at_5
            value: 0
          - type: ndcg_at_1
            value: 82.12
          - type: ndcg_at_10
            value: 89.035
          - type: ndcg_at_100
            value: 90.17399999999999
          - type: ndcg_at_1000
            value: 90.243
          - type: ndcg_at_3
            value: 86.32300000000001
          - type: ndcg_at_5
            value: 87.85
          - type: precision_at_1
            value: 82.12
          - type: precision_at_10
            value: 13.55
          - type: precision_at_100
            value: 1.54
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 37.89
          - type: precision_at_5
            value: 24.9
          - type: recall_at_1
            value: 71.358
          - type: recall_at_10
            value: 95.855
          - type: recall_at_100
            value: 99.711
          - type: recall_at_1000
            value: 99.994
          - type: recall_at_3
            value: 88.02
          - type: recall_at_5
            value: 92.378
          - type: main_score
            value: 89.035
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB RedditClustering
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
          split: test
          type: mteb/reddit-clustering
        metrics:
          - type: main_score
            value: 71.0984522742521
          - type: v_measure
            value: 71.0984522742521
          - type: v_measure_std
            value: 3.5668139917058044
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB RedditClusteringP2P
          revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
          split: test
          type: mteb/reddit-clustering-p2p
        metrics:
          - type: main_score
            value: 74.94499641904133
          - type: v_measure
            value: 74.94499641904133
          - type: v_measure_std
            value: 11.419672879389248
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB SCIDOCS
          revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
          split: test
          type: mteb/scidocs
        metrics:
          - type: map_at_1
            value: 5.343
          - type: map_at_10
            value: 13.044
          - type: map_at_100
            value: 15.290999999999999
          - type: map_at_1000
            value: 15.609
          - type: map_at_3
            value: 9.227
          - type: map_at_5
            value: 11.158
          - type: mrr_at_1
            value: 0
          - type: mrr_at_10
            value: 0
          - type: mrr_at_100
            value: 0
          - type: mrr_at_1000
            value: 0
          - type: mrr_at_3
            value: 0
          - type: mrr_at_5
            value: 0
          - type: ndcg_at_1
            value: 26.3
          - type: ndcg_at_10
            value: 21.901
          - type: ndcg_at_100
            value: 30.316
          - type: ndcg_at_1000
            value: 35.547000000000004
          - type: ndcg_at_3
            value: 20.560000000000002
          - type: ndcg_at_5
            value: 18.187
          - type: precision_at_1
            value: 26.3
          - type: precision_at_10
            value: 11.34
          - type: precision_at_100
            value: 2.344
          - type: precision_at_1000
            value: 0.359
          - type: precision_at_3
            value: 18.967
          - type: precision_at_5
            value: 15.920000000000002
          - type: recall_at_1
            value: 5.343
          - type: recall_at_10
            value: 22.997
          - type: recall_at_100
            value: 47.562
          - type: recall_at_1000
            value: 72.94500000000001
          - type: recall_at_3
            value: 11.533
          - type: recall_at_5
            value: 16.148
          - type: main_score
            value: 21.901
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB SICK-R
          revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
          split: test
          type: mteb/sickr-sts
        metrics:
          - type: cosine_pearson
            value: 87.3054603493591
          - type: cosine_spearman
            value: 82.14763206055602
          - type: manhattan_pearson
            value: 84.78737790237557
          - type: manhattan_spearman
            value: 81.88455356002758
          - type: euclidean_pearson
            value: 85.00668629311117
          - type: euclidean_spearman
            value: 82.14763037860851
          - type: main_score
            value: 82.14763206055602
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STS12
          revision: a0d554a64d88156834ff5ae9920b964011b16384
          split: test
          type: mteb/sts12-sts
        metrics:
          - type: cosine_pearson
            value: 86.6911864687294
          - type: cosine_spearman
            value: 77.89286260403269
          - type: manhattan_pearson
            value: 82.87240347680857
          - type: manhattan_spearman
            value: 78.10055393740326
          - type: euclidean_pearson
            value: 82.72282535777123
          - type: euclidean_spearman
            value: 77.89256648406325
          - type: main_score
            value: 77.89286260403269
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STS13
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
          split: test
          type: mteb/sts13-sts
        metrics:
          - type: cosine_pearson
            value: 87.7220832598633
          - type: cosine_spearman
            value: 88.30238972017452
          - type: manhattan_pearson
            value: 87.88214789140248
          - type: manhattan_spearman
            value: 88.24770220032391
          - type: euclidean_pearson
            value: 87.98610386257103
          - type: euclidean_spearman
            value: 88.30238972017452
          - type: main_score
            value: 88.30238972017452
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STS14
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
          split: test
          type: mteb/sts14-sts
        metrics:
          - type: cosine_pearson
            value: 85.70614623247714
          - type: cosine_spearman
            value: 84.29920990970672
          - type: manhattan_pearson
            value: 84.9836190531721
          - type: manhattan_spearman
            value: 84.40933470597638
          - type: euclidean_pearson
            value: 84.96652336693347
          - type: euclidean_spearman
            value: 84.29920989531965
          - type: main_score
            value: 84.29920990970672
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STS15
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
          split: test
          type: mteb/sts15-sts
        metrics:
          - type: cosine_pearson
            value: 88.4169972425264
          - type: cosine_spearman
            value: 89.03555007807218
          - type: manhattan_pearson
            value: 88.83068699455478
          - type: manhattan_spearman
            value: 89.21877175674125
          - type: euclidean_pearson
            value: 88.7251052947544
          - type: euclidean_spearman
            value: 89.03557389893083
          - type: main_score
            value: 89.03555007807218
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STS16
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
          split: test
          type: mteb/sts16-sts
        metrics:
          - type: cosine_pearson
            value: 85.63830579034632
          - type: cosine_spearman
            value: 86.77353371581373
          - type: manhattan_pearson
            value: 86.24830492396637
          - type: manhattan_spearman
            value: 86.96754348626189
          - type: euclidean_pearson
            value: 86.09837038778359
          - type: euclidean_spearman
            value: 86.77353371581373
          - type: main_score
            value: 86.77353371581373
        task:
          type: STS
      - dataset:
          config: en-en
          name: MTEB STS17 (en-en)
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
          split: test
          type: mteb/sts17-crosslingual-sts
        metrics:
          - type: cosine_pearson
            value: 91.2204675588959
          - type: cosine_spearman
            value: 90.66976712249057
          - type: manhattan_pearson
            value: 91.11007808242346
          - type: manhattan_spearman
            value: 90.51739232964488
          - type: euclidean_pearson
            value: 91.19588941007903
          - type: euclidean_spearman
            value: 90.66976712249057
          - type: main_score
            value: 90.66976712249057
        task:
          type: STS
      - dataset:
          config: en
          name: MTEB STS22 (en)
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
          split: test
          type: mteb/sts22-crosslingual-sts
        metrics:
          - type: cosine_pearson
            value: 69.34416749707114
          - type: cosine_spearman
            value: 68.11632448161046
          - type: manhattan_pearson
            value: 68.99243488935281
          - type: manhattan_spearman
            value: 67.8398546438258
          - type: euclidean_pearson
            value: 69.06376010216088
          - type: euclidean_spearman
            value: 68.11632448161046
          - type: main_score
            value: 68.11632448161046
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB STSBenchmark
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
          split: test
          type: mteb/stsbenchmark-sts
        metrics:
          - type: cosine_pearson
            value: 88.10309739429758
          - type: cosine_spearman
            value: 88.40520383147418
          - type: manhattan_pearson
            value: 88.50753383813232
          - type: manhattan_spearman
            value: 88.66382629460927
          - type: euclidean_pearson
            value: 88.35050664609376
          - type: euclidean_spearman
            value: 88.40520383147418
          - type: main_score
            value: 88.40520383147418
        task:
          type: STS
      - dataset:
          config: default
          name: MTEB SciDocsRR
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
          split: test
          type: mteb/scidocs-reranking
        metrics:
          - type: map
            value: 87.58627126942797
          - type: mrr
            value: 97.01098103058887
          - type: main_score
            value: 87.58627126942797
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB SciFact
          revision: 0228b52cf27578f30900b9e5271d331663a030d7
          split: test
          type: mteb/scifact
        metrics:
          - type: map_at_1
            value: 62.883
          - type: map_at_10
            value: 75.371
          - type: map_at_100
            value: 75.66000000000001
          - type: map_at_1000
            value: 75.667
          - type: map_at_3
            value: 72.741
          - type: map_at_5
            value: 74.74
          - type: mrr_at_1
            value: 0
          - type: mrr_at_10
            value: 0
          - type: mrr_at_100
            value: 0
          - type: mrr_at_1000
            value: 0
          - type: mrr_at_3
            value: 0
          - type: mrr_at_5
            value: 0
          - type: ndcg_at_1
            value: 66
          - type: ndcg_at_10
            value: 80.12700000000001
          - type: ndcg_at_100
            value: 81.291
          - type: ndcg_at_1000
            value: 81.464
          - type: ndcg_at_3
            value: 76.19
          - type: ndcg_at_5
            value: 78.827
          - type: precision_at_1
            value: 66
          - type: precision_at_10
            value: 10.567
          - type: precision_at_100
            value: 1.117
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 30.333
          - type: precision_at_5
            value: 20.133000000000003
          - type: recall_at_1
            value: 62.883
          - type: recall_at_10
            value: 93.556
          - type: recall_at_100
            value: 98.667
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 83.322
          - type: recall_at_5
            value: 89.756
          - type: main_score
            value: 80.12700000000001
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB SprintDuplicateQuestions
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
          split: test
          type: mteb/sprintduplicatequestions-pairclassification
        metrics:
          - type: cos_sim_accuracy
            value: 99.87524752475248
          - type: cos_sim_accuracy_threshold
            value: 74.86587762832642
          - type: cos_sim_ap
            value: 97.02222446606328
          - type: cos_sim_f1
            value: 93.66197183098592
          - type: cos_sim_f1_threshold
            value: 74.74223375320435
          - type: cos_sim_precision
            value: 94.23076923076923
          - type: cos_sim_recall
            value: 93.10000000000001
          - type: dot_accuracy
            value: 99.87524752475248
          - type: dot_accuracy_threshold
            value: 74.86587762832642
          - type: dot_ap
            value: 97.02222688043362
          - type: dot_f1
            value: 93.66197183098592
          - type: dot_f1_threshold
            value: 74.74223375320435
          - type: dot_precision
            value: 94.23076923076923
          - type: dot_recall
            value: 93.10000000000001
          - type: euclidean_accuracy
            value: 99.87524752475248
          - type: euclidean_accuracy_threshold
            value: 70.9000825881958
          - type: euclidean_ap
            value: 97.02222446606329
          - type: euclidean_f1
            value: 93.66197183098592
          - type: euclidean_f1_threshold
            value: 71.07426524162292
          - type: euclidean_precision
            value: 94.23076923076923
          - type: euclidean_recall
            value: 93.10000000000001
          - type: manhattan_accuracy
            value: 99.87623762376238
          - type: manhattan_accuracy_threshold
            value: 3588.5040283203125
          - type: manhattan_ap
            value: 97.09194643777883
          - type: manhattan_f1
            value: 93.7375745526839
          - type: manhattan_f1_threshold
            value: 3664.3760681152344
          - type: manhattan_precision
            value: 93.18181818181817
          - type: manhattan_recall
            value: 94.3
          - type: max_accuracy
            value: 99.87623762376238
          - type: max_ap
            value: 97.09194643777883
          - type: max_f1
            value: 93.7375745526839
        task:
          type: PairClassification
      - dataset:
          config: default
          name: MTEB StackExchangeClustering
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
          split: test
          type: mteb/stackexchange-clustering
        metrics:
          - type: main_score
            value: 82.10134099988541
          - type: v_measure
            value: 82.10134099988541
          - type: v_measure_std
            value: 2.7926349897769533
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB StackExchangeClusteringP2P
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
          split: test
          type: mteb/stackexchange-clustering-p2p
        metrics:
          - type: main_score
            value: 48.357450742397404
          - type: v_measure
            value: 48.357450742397404
          - type: v_measure_std
            value: 1.520118876440547
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB StackOverflowDupQuestions
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
          split: test
          type: mteb/stackoverflowdupquestions-reranking
        metrics:
          - type: map
            value: 55.79277200802986
          - type: mrr
            value: 56.742517082590616
          - type: main_score
            value: 55.79277200802986
        task:
          type: Reranking
      - dataset:
          config: default
          name: MTEB SummEval
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
          split: test
          type: mteb/summeval
        metrics:
          - type: cosine_spearman
            value: 30.701215774712693
          - type: cosine_pearson
            value: 31.26740037278488
          - type: dot_spearman
            value: 30.701215774712693
          - type: dot_pearson
            value: 31.267404144879997
          - type: main_score
            value: 30.701215774712693
        task:
          type: Summarization
      - dataset:
          config: default
          name: MTEB TRECCOVID
          revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
          split: test
          type: mteb/trec-covid
        metrics:
          - type: map_at_1
            value: 0.23800000000000002
          - type: map_at_10
            value: 2.31
          - type: map_at_100
            value: 15.495000000000001
          - type: map_at_1000
            value: 38.829
          - type: map_at_3
            value: 0.72
          - type: map_at_5
            value: 1.185
          - type: mrr_at_1
            value: 0
          - type: mrr_at_10
            value: 0
          - type: mrr_at_100
            value: 0
          - type: mrr_at_1000
            value: 0
          - type: mrr_at_3
            value: 0
          - type: mrr_at_5
            value: 0
          - type: ndcg_at_1
            value: 91
          - type: ndcg_at_10
            value: 88.442
          - type: ndcg_at_100
            value: 71.39
          - type: ndcg_at_1000
            value: 64.153
          - type: ndcg_at_3
            value: 89.877
          - type: ndcg_at_5
            value: 89.562
          - type: precision_at_1
            value: 92
          - type: precision_at_10
            value: 92.60000000000001
          - type: precision_at_100
            value: 73.74000000000001
          - type: precision_at_1000
            value: 28.222
          - type: precision_at_3
            value: 94
          - type: precision_at_5
            value: 93.60000000000001
          - type: recall_at_1
            value: 0.23800000000000002
          - type: recall_at_10
            value: 2.428
          - type: recall_at_100
            value: 18.099999999999998
          - type: recall_at_1000
            value: 60.79599999999999
          - type: recall_at_3
            value: 0.749
          - type: recall_at_5
            value: 1.238
          - type: main_score
            value: 88.442
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB Touche2020
          revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
          split: test
          type: mteb/touche2020
        metrics:
          - type: map_at_1
            value: 3.4939999999999998
          - type: map_at_10
            value: 12.531999999999998
          - type: map_at_100
            value: 19.147
          - type: map_at_1000
            value: 20.861
          - type: map_at_3
            value: 7.558
          - type: map_at_5
            value: 9.49
          - type: mrr_at_1
            value: 0
          - type: mrr_at_10
            value: 0
          - type: mrr_at_100
            value: 0
          - type: mrr_at_1000
            value: 0
          - type: mrr_at_3
            value: 0
          - type: mrr_at_5
            value: 0
          - type: ndcg_at_1
            value: 47.959
          - type: ndcg_at_10
            value: 31.781
          - type: ndcg_at_100
            value: 42.131
          - type: ndcg_at_1000
            value: 53.493
          - type: ndcg_at_3
            value: 39.204
          - type: ndcg_at_5
            value: 34.635
          - type: precision_at_1
            value: 48.980000000000004
          - type: precision_at_10
            value: 27.143
          - type: precision_at_100
            value: 8.224
          - type: precision_at_1000
            value: 1.584
          - type: precision_at_3
            value: 38.775999999999996
          - type: precision_at_5
            value: 33.061
          - type: recall_at_1
            value: 3.4939999999999998
          - type: recall_at_10
            value: 18.895
          - type: recall_at_100
            value: 50.192
          - type: recall_at_1000
            value: 85.167
          - type: recall_at_3
            value: 8.703
          - type: recall_at_5
            value: 11.824
          - type: main_score
            value: 31.781
        task:
          type: Retrieval
      - dataset:
          config: default
          name: MTEB ToxicConversationsClassification
          revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
          split: test
          type: mteb/toxic_conversations_50k
        metrics:
          - type: accuracy
            value: 92.7402
          - type: accuracy_stderr
            value: 1.020764595781027
          - type: ap
            value: 44.38594756333084
          - type: ap_stderr
            value: 1.817150701258273
          - type: f1
            value: 79.95699280019547
          - type: f1_stderr
            value: 1.334582498702029
          - type: main_score
            value: 92.7402
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB TweetSentimentExtractionClassification
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
          split: test
          type: mteb/tweet_sentiment_extraction
        metrics:
          - type: accuracy
            value: 80.86870401810978
          - type: accuracy_stderr
            value: 0.22688467782004712
          - type: f1
            value: 81.1829040745744
          - type: f1_stderr
            value: 0.19774920574849694
          - type: main_score
            value: 80.86870401810978
        task:
          type: Classification
      - dataset:
          config: default
          name: MTEB TwentyNewsgroupsClustering
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
          split: test
          type: mteb/twentynewsgroups-clustering
        metrics:
          - type: main_score
            value: 64.82048869927482
          - type: v_measure
            value: 64.82048869927482
          - type: v_measure_std
            value: 0.9170394252450564
        task:
          type: Clustering
      - dataset:
          config: default
          name: MTEB TwitterSemEval2015
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
          split: test
          type: mteb/twittersemeval2015-pairclassification
        metrics:
          - type: cos_sim_accuracy
            value: 88.44251057996067
          - type: cos_sim_accuracy_threshold
            value: 70.2150285243988
          - type: cos_sim_ap
            value: 81.11422351199913
          - type: cos_sim_f1
            value: 73.71062868615887
          - type: cos_sim_f1_threshold
            value: 66.507488489151
          - type: cos_sim_precision
            value: 70.2799712849964
          - type: cos_sim_recall
            value: 77.4934036939314
          - type: dot_accuracy
            value: 88.44251057996067
          - type: dot_accuracy_threshold
            value: 70.2150285243988
          - type: dot_ap
            value: 81.11420529068658
          - type: dot_f1
            value: 73.71062868615887
          - type: dot_f1_threshold
            value: 66.50749444961548
          - type: dot_precision
            value: 70.2799712849964
          - type: dot_recall
            value: 77.4934036939314
          - type: euclidean_accuracy
            value: 88.44251057996067
          - type: euclidean_accuracy_threshold
            value: 77.18156576156616
          - type: euclidean_ap
            value: 81.11422421732487
          - type: euclidean_f1
            value: 73.71062868615887
          - type: euclidean_f1_threshold
            value: 81.84436559677124
          - type: euclidean_precision
            value: 70.2799712849964
          - type: euclidean_recall
            value: 77.4934036939314
          - type: manhattan_accuracy
            value: 88.26369434344639
          - type: manhattan_accuracy_threshold
            value: 3837.067413330078
          - type: manhattan_ap
            value: 80.81442360477725
          - type: manhattan_f1
            value: 73.39883099117024
          - type: manhattan_f1_threshold
            value: 4098.833847045898
          - type: manhattan_precision
            value: 69.41896024464832
          - type: manhattan_recall
            value: 77.86279683377309
          - type: max_accuracy
            value: 88.44251057996067
          - type: max_ap
            value: 81.11422421732487
          - type: max_f1
            value: 73.71062868615887
        task:
          type: PairClassification
      - dataset:
          config: default
          name: MTEB TwitterURLCorpus
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
          split: test
          type: mteb/twitterurlcorpus-pairclassification
        metrics:
          - type: cos_sim_accuracy
            value: 90.03182365040556
          - type: cos_sim_accuracy_threshold
            value: 64.46443796157837
          - type: cos_sim_ap
            value: 87.86649113691112
          - type: cos_sim_f1
            value: 80.45644844577821
          - type: cos_sim_f1_threshold
            value: 61.40774488449097
          - type: cos_sim_precision
            value: 77.54052702992216
          - type: cos_sim_recall
            value: 83.60024638127503
          - type: dot_accuracy
            value: 90.03182365040556
          - type: dot_accuracy_threshold
            value: 64.46444988250732
          - type: dot_ap
            value: 87.86649011954319
          - type: dot_f1
            value: 80.45644844577821
          - type: dot_f1_threshold
            value: 61.407750844955444
          - type: dot_precision
            value: 77.54052702992216
          - type: dot_recall
            value: 83.60024638127503
          - type: euclidean_accuracy
            value: 90.03182365040556
          - type: euclidean_accuracy_threshold
            value: 84.30368900299072
          - type: euclidean_ap
            value: 87.86649114275045
          - type: euclidean_f1
            value: 80.45644844577821
          - type: euclidean_f1_threshold
            value: 87.8547191619873
          - type: euclidean_precision
            value: 77.54052702992216
          - type: euclidean_recall
            value: 83.60024638127503
          - type: manhattan_accuracy
            value: 89.99883572010712
          - type: manhattan_accuracy_threshold
            value: 4206.838607788086
          - type: manhattan_ap
            value: 87.8600826607838
          - type: manhattan_f1
            value: 80.44054508120217
          - type: manhattan_f1_threshold
            value: 4372.755432128906
          - type: manhattan_precision
            value: 78.08219178082192
          - type: manhattan_recall
            value: 82.94579611949491
          - type: max_accuracy
            value: 90.03182365040556
          - type: max_ap
            value: 87.86649114275045
          - type: max_f1
            value: 80.45644844577821
        task:
          type: PairClassification
language:
  - en
license: cc-by-nc-4.0
library_name: transformers

Introduction

We present NV-Embed-v2, a generalist embedding model that ranks No. 1 on the Massive Text Embedding Benchmark (MTEB benchmark)(as of Aug 30, 2024) with a score of 72.31 across 56 text embedding tasks. It also holds the No. 1 in the retrieval sub-category (a score of 62.65 across 15 tasks) in the leaderboard, which is essential to the development of RAG technology.

NV-Embed-v2 presents several new designs, including having the LLM attend to latent vectors for better pooled embedding output, and demonstrating a two-staged instruction tuning method to enhance the accuracy of both retrieval and non-retrieval tasks. Additionally, NV-Embed-v2 incorporates a novel hard-negative mining methods that take into account the positive relevance score for better false negatives removal.

For more technical details, refer to our paper: NV-Embed: Improved Techniques for Training LLMs as Generalist Embedding Models.

Model Details

  • Base Decoder-only LLM: Mistral-7B-v0.1
  • Pooling Type: Latent-Attention
  • Embedding Dimension: 4096

How to use

Here is an example of how to encode queries and passages using Huggingface-transformer and Sentence-transformer. Please find the required package version here.

Usage (HuggingFace Transformers)

import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel

# Each query needs to be accompanied by an corresponding instruction describing the task.
task_name_to_instruct = {"example": "Given a question, retrieve passages that answer the question",}

query_prefix = "Instruct: "+task_name_to_instruct["example"]+"\nQuery: "
queries = [
    'are judo throws allowed in wrestling?', 
    'how to become a radiology technician in michigan?'
    ]

# No instruction needed for retrieval passages
passage_prefix = ""
passages = [
    "Since you're reading this, you are probably someone from a judo background or someone who is just wondering how judo techniques can be applied under wrestling rules. So without further ado, let's get to the question. Are Judo throws allowed in wrestling? Yes, judo throws are allowed in freestyle and folkstyle wrestling. You only need to be careful to follow the slam rules when executing judo throws. In wrestling, a slam is lifting and returning an opponent to the mat with unnecessary force.",
    "Below are the basic steps to becoming a radiologic technologist in Michigan:Earn a high school diploma. As with most careers in health care, a high school education is the first step to finding entry-level employment. Taking classes in math and science, such as anatomy, biology, chemistry, physiology, and physics, can help prepare students for their college studies and future careers.Earn an associate degree. Entry-level radiologic positions typically require at least an Associate of Applied Science. Before enrolling in one of these degree programs, students should make sure it has been properly accredited by the Joint Review Committee on Education in Radiologic Technology (JRCERT).Get licensed or certified in the state of Michigan."
]

# load model with tokenizer
model = AutoModel.from_pretrained('nvidia/NV-Embed-v2', trust_remote_code=True)

# get the embeddings
max_length = 32768
query_embeddings = model.encode(queries, instruction=query_prefix, max_length=max_length)
passage_embeddings = model.encode(passages, instruction=passage_prefix, max_length=max_length)

# normalize embeddings
query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
passage_embeddings = F.normalize(passage_embeddings, p=2, dim=1)

# get the embeddings with DataLoader (spliting the datasets into multiple mini-batches)
# batch_size=2
# query_embeddings = model._do_encode(queries, batch_size=batch_size, instruction=query_prefix, max_length=max_length, num_workers=32, return_numpy=True)
# passage_embeddings = model._do_encode(passages, batch_size=batch_size, instruction=passage_prefix, max_length=max_length, num_workers=32, return_numpy=True)

scores = (query_embeddings @ passage_embeddings.T) * 100
print(scores.tolist())
# [[87.42693328857422, 0.46283677220344543], [0.965264618396759, 86.03721618652344]]

Usage (Sentence-Transformers)

import torch
from sentence_transformers import SentenceTransformer

# Each query needs to be accompanied by an corresponding instruction describing the task.
task_name_to_instruct = {"example": "Given a question, retrieve passages that answer the question",}

query_prefix = "Instruct: "+task_name_to_instruct["example"]+"\nQuery: "
queries = [
    'are judo throws allowed in wrestling?', 
    'how to become a radiology technician in michigan?'
    ]

# No instruction needed for retrieval passages
passages = [
    "Since you're reading this, you are probably someone from a judo background or someone who is just wondering how judo techniques can be applied under wrestling rules. So without further ado, let's get to the question. Are Judo throws allowed in wrestling? Yes, judo throws are allowed in freestyle and folkstyle wrestling. You only need to be careful to follow the slam rules when executing judo throws. In wrestling, a slam is lifting and returning an opponent to the mat with unnecessary force.",
    "Below are the basic steps to becoming a radiologic technologist in Michigan:Earn a high school diploma. As with most careers in health care, a high school education is the first step to finding entry-level employment. Taking classes in math and science, such as anatomy, biology, chemistry, physiology, and physics, can help prepare students for their college studies and future careers.Earn an associate degree. Entry-level radiologic positions typically require at least an Associate of Applied Science. Before enrolling in one of these degree programs, students should make sure it has been properly accredited by the Joint Review Committee on Education in Radiologic Technology (JRCERT).Get licensed or certified in the state of Michigan."
]

# load model with tokenizer
model = SentenceTransformer('nvidia/NV-Embed-v2', trust_remote_code=True)
model.max_seq_length = 32768
model.tokenizer.padding_side="right"

def add_eos(input_examples):
  input_examples = [input_example + model.tokenizer.eos_token for input_example in input_examples]
  return input_examples

# get the embeddings
batch_size = 2
query_embeddings = model.encode(add_eos(queries), batch_size=batch_size, prompt=query_prefix, normalize_embeddings=True)
passage_embeddings = model.encode(add_eos(passages), batch_size=batch_size, normalize_embeddings=True)

scores = (query_embeddings @ passage_embeddings.T) * 100
print(scores.tolist())

License

This model should not be used for any commercial purpose. Refer the license for the detailed terms.

For commercial purpose, we recommend you to use the models of NeMo Retriever Microservices (NIMs).

Correspondence to

Chankyu Lee ([email protected]), Wei Ping ([email protected])

Citation

If you find this code useful in your research, please consider citing:

@article{lee2024nv,
  title={NV-Embed: Improved Techniques for Training LLMs as Generalist Embedding Models},
  author={Lee, Chankyu and Roy, Rajarshi and Xu, Mengyao and Raiman, Jonathan and Shoeybi, Mohammad and Catanzaro, Bryan and Ping, Wei},
  journal={arXiv preprint arXiv:2405.17428},
  year={2024}
}
@article{moreira2024nv,
  title={NV-Retriever: Improving text embedding models with effective hard-negative mining},
  author={Moreira, Gabriel de Souza P and Osmulski, Radek and Xu, Mengyao and Ak, Ronay and Schifferer, Benedikt and Oldridge, Even},
  journal={arXiv preprint arXiv:2407.15831},
  year={2024}
}

Troubleshooting

1. Instruction template for MTEB benchmarks

For MTEB sub-tasks for retrieval, STS, summarization, please use the instruction prefix template in instructions.json. For classification, clustering and reranking, please use the instructions provided in Table. 7 in NV-Embed paper.

2. Required Packages

If you have trouble, try installing the python packages as below

pip uninstall -y transformer-engine
pip install torch==2.2.0
pip install transformers==4.42.4
pip install flash-attn==2.2.0
pip install sentence-transformers==2.7.0

3. How to enable Multi-GPU (Note, this is the case for HuggingFace Transformers)

from transformers import AutoModel
from torch.nn import DataParallel

embedding_model = AutoModel.from_pretrained("nvidia/NV-Embed-v2")
for module_key, module in embedding_model._modules.items():
    embedding_model._modules[module_key] = DataParallel(module)

4. Fixing "nvidia/NV-Embed-v2 is not the path to a directory containing a file named config.json"

Switch to your local model path,and open config.json and change the value of "_name_or_path" and replace it with your local model path.

5. Access to model nvidia/NV-Embed-v2 is restricted. You must be authenticated to access it

Use your huggingface access token to execute "huggingface-cli login".

6. How to resolve slight mismatch in Sentence transformer results.

A slight mismatch in the Sentence Transformer implementation is caused by a discrepancy in the calculation of the instruction prefix length within the Sentence Transformer package.

To fix this issue, you need to build the Sentence Transformer package from source, making the necessary modification in this line as below.

git clone https://github.com/UKPLab/sentence-transformers.git
cd sentence-transformers
git checkout v2.7-release
# Modify L353 in SentenceTransformer.py to **'extra_features["prompt_length"] = tokenized_prompt["input_ids"].shape[-1]'**.
pip install -e .