bigvgan_base_22khz_80band / alias_free_cuda /anti_alias_activation_cuda.cu
L0SG's picture
update
aa76dec
raw
history blame
10.7 kB
/* coding=utf-8
* Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <ATen/ATen.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include <cuda_profiler_api.h>
#include <ATen/cuda/CUDAContext.h>
#include <torch/extension.h>
#include "type_shim.h"
#include <assert.h>
#include <cfloat>
#include <limits>
#include <stdint.h>
#include <c10/macros/Macros.h>
namespace {
/*
template <typename Datatype, int ELEMENTS_PER_LDG>
__device__ __inline__ void copy_vector(Datatype *dst, const Datatype *src);
template <>
__device__ __inline__ void copy_vector<c10::BFloat16, 1>(c10::BFloat16 *dst, const c10::BFloat16 *src) { *dst = *src; }
template <>
__device__ __inline__ void copy_vector<c10::BFloat16, 4>(c10::BFloat16 *dst, const c10::BFloat16 *src) { *((float2*) dst) = *((float2*) src); }
template <>
__device__ __inline__ void copy_vector<c10::Half, 1>(c10::Half *dst, const c10::Half *src) { *dst = *src; }
template <>
__device__ __inline__ void copy_vector<c10::Half, 4>(c10::Half *dst, const c10::Half *src) { *((float2*) dst) = *((float2*) src); }
template <>
__device__ __inline__ void copy_vector<uint8_t, 1>(uint8_t *dst, const uint8_t *src) { *dst = *src; }
template <>
__device__ __inline__ void copy_vector<uint8_t, 4>(uint8_t *dst, const uint8_t *src) {*((half2*) dst) = *((half2*) src); }
int log2_ceil(int value) {
int log2_value = 0;
while ((1 << log2_value) < value) ++log2_value;
return log2_value;
}
template<typename T>
struct Add {
__device__ __forceinline__ T operator()(T a, T b) const {
return a + b;
}
};
template<typename T>
struct Max {
__device__ __forceinline__ T operator()(T a, T b) const {
return a < b ? b : a;
}
};
template <typename T>
__device__ __forceinline__ T WARP_SHFL_XOR_NATIVE(T value, int laneMask, int width = warpSize, unsigned int mask = 0xffffffff)
{
#if CUDA_VERSION >= 9000
return __shfl_xor_sync(mask, value, laneMask, width);
#else
return __shfl_xor(value, laneMask, width);
#endif
}
template <typename acc_t, int WARP_BATCH, int WARP_SIZE, template<typename> class ReduceOp>
__device__ __forceinline__ void warp_reduce(acc_t* sum) {
ReduceOp<acc_t> r;
#pragma unroll
for (int offset = WARP_SIZE / 2; offset > 0; offset /= 2) {
#pragma unroll
for (int i = 0; i < WARP_BATCH; ++i) {
acc_t b = WARP_SHFL_XOR_NATIVE(sum[i], offset, WARP_SIZE);
sum[i] = r(sum[i], b);
}
}
}
*/
template <typename input_t, typename output_t, typename acc_t>
__global__ void anti_alias_activation_forward(
output_t *dst,
const input_t *src,
const input_t *ftr,
const input_t *alpha,
const input_t *beta,
int batch_size,
int channels,
int seq_len)
{
// WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and
constexpr int ELEMENTS_PER_LDG_STG = 1; //(WARP_ITERATIONS < 4) ? 1 : 4;
constexpr int BUFFER_SIZE = 32;
constexpr int FILTER_SIZE = 12;
constexpr int HALF_FILTER_SIZE = 6;
constexpr int REPLICATION_PAD = 5; // 5 on each side
// blockDim/threadIdx = (128, 1, 1)
// gridDim/blockIdx = (seq_blocks, channels, batches)
int block_offset = (blockIdx.x * 128 * BUFFER_SIZE + seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
int local_offset = threadIdx.x * BUFFER_SIZE;
int seq_offset = blockIdx.x * 128 * BUFFER_SIZE + local_offset;
//int intermediate_seq_len = seq_len * 2 - 1 + 4 * REPLICATION_PAD;
//int intermediate_block_offset = (blockIdx.x * 128 * BUFFER_SIZE * 2 + intermediate_seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
//int intermediate_local_offset = threadIdx.x * BUFFER_SIZE * 2;
int output_seq_len = seq_len * 2 ; //
int output_block_offset = (blockIdx.x * 128 * BUFFER_SIZE * 2 + output_seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
int output_local_offset = threadIdx.x * BUFFER_SIZE * 2;
int output_seq_offset = blockIdx.x * 128 * BUFFER_SIZE *2 + output_local_offset;
// get values needed for replication padding before moving pointer
const input_t *right_most_pntr = src + (seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
input_t seq_left_most_value = right_most_pntr[0];
input_t seq_right_most_value = right_most_pntr[seq_len - 1];
src += block_offset + local_offset;
dst += output_block_offset + output_local_offset ;
alpha = alpha + blockIdx.y;
input_t alpha_val = expf(alpha[0]);
beta = beta + blockIdx.y;
input_t beta_val = expf(beta[0]);
// load data from global memory
input_t elements[2*FILTER_SIZE+2*BUFFER_SIZE] = {0};
input_t intermediates[2*FILTER_SIZE+2*BUFFER_SIZE] = {0};
//output_t output[2*BUFFER_SIZE];
input_t filter[FILTER_SIZE];
//input_t temp_data[ELEMENTS_PER_LDG_STG];
//uint8_t temp_mask[ELEMENTS_PER_LDG_STG];
#pragma unroll
for (int it = 0; it < FILTER_SIZE; it+=1) {
filter[it] = ftr[it];
}
#pragma unroll
for (int it = -HALF_FILTER_SIZE; it < BUFFER_SIZE + HALF_FILTER_SIZE ; it+=1) {
int element_index = seq_offset + it;
if ((element_index < 0) && (element_index >= -REPLICATION_PAD)) {
elements[2*(HALF_FILTER_SIZE+it)] = 2*seq_left_most_value;
}
if ((element_index >= seq_len) && (element_index < seq_len + REPLICATION_PAD)) {
elements[2*(HALF_FILTER_SIZE+it)] = 2*seq_right_most_value;
}
if ((element_index >= 0) && (element_index < seq_len)) {
elements[2*(HALF_FILTER_SIZE+it)] = 2*src[it];
}
}
// apply filter
#pragma unroll
for (int it = 0; it < (2 * BUFFER_SIZE + 2*FILTER_SIZE); it+=1) {
input_t acc = 0.0;
int element_index = output_seq_offset + it; // index for output
#pragma unroll
for (int f_idx = 0; f_idx < FILTER_SIZE; f_idx+=1){
if ((element_index + f_idx) >= 0){
acc += filter[f_idx] * elements[it+f_idx];
}
}
intermediates[it] = acc;
}
double no_div_by_zero = 0.000000001;
#pragma unroll
for (int it = 0; it < 12 + 2 * BUFFER_SIZE; it++) {
intermediates[it] += (1.0/(beta_val + no_div_by_zero)) * sinf(intermediates[it] * alpha_val) * sinf(intermediates[it] * alpha_val);
}
// now copy to output
#pragma unroll
for (int it = 0; it < 2*BUFFER_SIZE; it+=1){
int element_index = output_seq_offset + it;
if (element_index < output_seq_len) {
dst[it] = intermediates[it+6];
}
}
// for (int it = 0; it < BUFFER_SIZE; it+=ELEMENTS_PER_LDG_STG) {
// int element_index = seq_offset + it;
// if (element_index < seq_len) {
// dst[it] = output[it];
// }
// }
// // Upsample convolution
// for (int it = 0; it < 2 * BUFFER_SIZE + 12; it+=1) {
// input_t acc = 0.0;
// for (int f_idx = 0; f_idx < FILTER_SIZE; f_idx+=1){
// acc += filter[f_idx] * elements[it+f_idx];
// }
// intermediates[it] = acc;
// }
// // correct the corners of intermediates
// if (seq_offset == 0) {
// for (int it = 0; it < 6; it+=1)
// intermediates[it] = 0;
// }
// if (seq_offset + 32 >= seq_len) {
// int offset = seq_len % 32 == 0 ? 32 : seq_len % 32;
// for (int it = 0; it < 6; it++) {
// intermediates[6+2*offset+it] = 0;
// }
// }
// for (int it = 0; it < BUFFER_SIZE; it+=ELEMENTS_PER_LDG_STG) {
// int element_index = seq_offset + it;
// if (element_index < seq_len) {
// dst[it] = output[it];
// }
// }
}
template<typename input_t, typename output_t, typename acc_t>
void dispatch_anti_alias_activation_forward(
output_t *dst,
const input_t *src,
const input_t *ftr,
const input_t *alpha,
const input_t *beta,
int batch_size,
int channels,
int seq_len)
{
if (seq_len == 0) {
return;
} else {
// use 128 threads per block to maximimize gpu utilization
constexpr int threads_per_block = 128;
constexpr int seq_len_per_block = 4096;
int blocks_per_seq_len = (seq_len + seq_len_per_block - 1) / seq_len_per_block;
dim3 blocks(blocks_per_seq_len, channels, batch_size);
dim3 threads(threads_per_block, 1, 1);
anti_alias_activation_forward<input_t, output_t, acc_t>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, ftr, alpha, beta, batch_size, channels, seq_len);
}
}
}
namespace anti_alias_activation {
torch::Tensor fwd_cuda(torch::Tensor const& input, torch::Tensor const& filter, torch::Tensor const& alpha, torch::Tensor const& beta)
{
// input is a 4d tensor with dimensions [batches, attn_heads, seq_len, seq_len]
const int batches = input.size(0);
const int channels = input.size(1);
const int seq_len = input.size(2);
// Output
auto act_options = input.options().requires_grad(false);
int output_seq_len = seq_len*2; // we'll be dilating between each element by interspersing with zeros
torch::Tensor anti_alias_activation_results =
torch::empty({batches, channels, output_seq_len}, act_options);
// Softmax Intermediate Result Ptr
void* input_ptr = static_cast<void*>(input.data_ptr());
void* filter_ptr = static_cast<void*>(filter.data_ptr());
void* alpha_ptr = static_cast<void*>(alpha.data_ptr());
void* beta_ptr = static_cast<void*>(beta.data_ptr());
void* anti_alias_activation_results_ptr = static_cast<void*>(anti_alias_activation_results.data_ptr());
DISPATCH_FLOAT_HALF_AND_BFLOAT(
input.scalar_type(),
"dispatch anti alias activation_forward",
dispatch_anti_alias_activation_forward<scalar_t, scalar_t, float>(
reinterpret_cast<scalar_t*>(anti_alias_activation_results_ptr),
reinterpret_cast<const scalar_t*>(input_ptr),
reinterpret_cast<const scalar_t*>(filter_ptr),
reinterpret_cast<const scalar_t*>(alpha_ptr),
reinterpret_cast<const scalar_t*>(beta_ptr),
batches,
channels,
seq_len);
);
return anti_alias_activation_results;
}
}