domain-classifier / README.md
ryantwolf's picture
vjawa_test_readme_updates (#5)
b4e372c verified
|
raw
history blame
1.74 kB
metadata
tags:
  - pytorch_model_hub_mixin
  - model_hub_mixin

nvidia/domain-classifier

This repository contains the code for the domain classifier model.

How to use in transformers

To use the Domain classifier, use the following code:


import torch
from torch import nn
from transformers import AutoModel, AutoTokenizer, AutoConfig
from huggingface_hub import PyTorchModelHubMixin

class CustomModel(nn.Module, PyTorchModelHubMixin):
    def __init__(self, config):
        super(CustomModel, self).__init__()
        self.model = AutoModel.from_pretrained(config['base_model'])
        self.dropout = nn.Dropout(config['fc_dropout'])
        self.fc = nn.Linear(self.model.config.hidden_size, len(config['id2label']))

    def forward(self, input_ids, attention_mask):
        features = self.model(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state
        dropped = self.dropout(features)
        outputs = self.fc(dropped)
        return torch.softmax(outputs[:, 0, :], dim=1)

# Setup configuration and model
config = AutoConfig.from_pretrained("nvidia/domain-classifier")
tokenizer = AutoTokenizer.from_pretrained("nvidia/domain-classifier")
model = CustomModel.from_pretrained("nvidia/domain-classifier")

# Prepare and process inputs
text_samples = ["Sports is a popular domain", "Politics is a popular domain"]
inputs = tokenizer(text_samples, return_tensors="pt", padding="longest", truncation=True)
outputs = model(inputs['input_ids'], inputs['attention_mask'])

# Predict and display results
predicted_classes = torch.argmax(outputs, dim=1)
predicted_domains = [config.id2label[class_idx.item()] for class_idx in predicted_classes.cpu().numpy()]
print(predicted_domains)
# ['Sports', 'News']