metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- food101
metrics:
- accuracy
model-index:
- name: image_classification
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: food101
type: food101
config: default
split: train[:5000]
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.884
image_classification
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the food101 dataset. It achieves the following results on the evaluation set:
- Loss: 1.6322
- Accuracy: 0.884
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.722 | 0.99 | 62 | 2.5374 | 0.822 |
1.8121 | 2.0 | 125 | 1.8029 | 0.854 |
1.6025 | 2.98 | 186 | 1.6395 | 0.881 |
Framework versions
- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3