|
--- |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
- Text Generation |
|
- llama |
|
- t5 |
|
model-index: |
|
- name: Prompt-Enhace-T5-base |
|
results: [] |
|
datasets: |
|
- gokaygokay/prompt-enhancer-dataset |
|
license: apache-2.0 |
|
language: |
|
- en |
|
base_model: google-t5/t5-base |
|
library_name: transformers |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
|
|
|
|
# omersaidd / Prompt-Enhace-T5-base |
|
|
|
This model was trained from scratch on an gokaygokay/prompt-enhancer-dataset dataset. |
|
|
|
Bu modelin eğitiminde gokaygokay/prompt-enhancer-dataset veriseti kullanılmşıtır |
|
|
|
## Model description |
|
|
|
This model is trained with the google/t5-base and the database on prompt generation. |
|
|
|
Bu model google/t5-base ile prompt üretimek üzerine veriseti ile eğitilmişitir |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
Kullandığımız verisetimiz gokaygokay/prompt-enhancer-dataset |
|
|
|
Our dataset we use gokaygokay/prompt-enhancer-dataset |
|
|
|
### Training hyperparameters |
|
|
|
Eğitim sırasında aşağıdaki hiperparametreler kullanılmıştır: |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-6 |
|
- train_batch_size: 256 |
|
- eval_batch_size: 256 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 3 |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.43.1 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|
|
## Test Model Code |
|
|
|
```python |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint) |
|
|
|
enhancer = pipeline('text2text-generation', |
|
model=model, |
|
tokenizer=tokenizer, |
|
repetition_penalty= 1.2, |
|
device=device) |
|
|
|
max_target_length = 256 |
|
prefix = "enhance prompt: " |
|
|
|
short_prompt = "beautiful house with text 'hello'" |
|
answer = enhancer(prefix + short_prompt, max_length=max_target_length) |
|
final_answer = answer[0]['generated_text'] |
|
print(final_answer) |
|
``` |