|
---
|
|
license: apache-2.0
|
|
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
|
|
tags:
|
|
- generated_from_trainer
|
|
datasets:
|
|
- imagefolder
|
|
metrics:
|
|
- accuracy
|
|
model-index:
|
|
- name: Boya1_SGD_1-e3_20Epoch_09Momentum_Beit-base-patch16_fold2
|
|
results:
|
|
- task:
|
|
name: Image Classification
|
|
type: image-classification
|
|
dataset:
|
|
name: imagefolder
|
|
type: imagefolder
|
|
config: default
|
|
split: test
|
|
args: default
|
|
metrics:
|
|
- name: Accuracy
|
|
type: accuracy
|
|
value: 0.41702702702702704
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# Boya1_SGD_1-e3_20Epoch_09Momentum_Beit-base-patch16_fold2
|
|
|
|
This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 1.8092
|
|
- Accuracy: 0.4170
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 0.001
|
|
- train_batch_size: 16
|
|
- eval_batch_size: 16
|
|
- seed: 42
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- lr_scheduler_warmup_ratio: 0.1
|
|
- num_epochs: 20
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
|
| 2.364 | 1.0 | 923 | 2.4299 | 0.2108 |
|
|
| 2.3719 | 2.0 | 1846 | 2.2817 | 0.2649 |
|
|
| 2.2408 | 3.0 | 2769 | 2.1860 | 0.2889 |
|
|
| 2.1829 | 4.0 | 3692 | 2.1102 | 0.3143 |
|
|
| 2.0369 | 5.0 | 4615 | 2.0577 | 0.3241 |
|
|
| 2.061 | 6.0 | 5538 | 2.0066 | 0.3419 |
|
|
| 1.9167 | 7.0 | 6461 | 1.9797 | 0.3568 |
|
|
| 2.0057 | 8.0 | 7384 | 1.9411 | 0.3673 |
|
|
| 2.0098 | 9.0 | 8307 | 1.9258 | 0.3722 |
|
|
| 1.9046 | 10.0 | 9230 | 1.9019 | 0.3822 |
|
|
| 1.862 | 11.0 | 10153 | 1.8785 | 0.3922 |
|
|
| 1.8051 | 12.0 | 11076 | 1.8624 | 0.3973 |
|
|
| 1.8752 | 13.0 | 11999 | 1.8478 | 0.3981 |
|
|
| 1.9831 | 14.0 | 12922 | 1.8389 | 0.4032 |
|
|
| 1.8913 | 15.0 | 13845 | 1.8338 | 0.4051 |
|
|
| 1.9373 | 16.0 | 14768 | 1.8269 | 0.4086 |
|
|
| 1.8457 | 17.0 | 15691 | 1.8202 | 0.4089 |
|
|
| 1.7936 | 18.0 | 16614 | 1.8117 | 0.4159 |
|
|
| 1.7608 | 19.0 | 17537 | 1.8101 | 0.4168 |
|
|
| 1.9672 | 20.0 | 18460 | 1.8092 | 0.4170 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.35.0
|
|
- Pytorch 2.1.0
|
|
- Datasets 2.14.6
|
|
- Tokenizers 0.14.1
|
|
|