|
---
|
|
license: apache-2.0
|
|
base_model: facebook/deit-tiny-patch16-224
|
|
tags:
|
|
- generated_from_trainer
|
|
datasets:
|
|
- imagefolder
|
|
metrics:
|
|
- accuracy
|
|
model-index:
|
|
- name: Boya1_SGD_1-e3_20Epoch_Deit-tiny-patch16_fold3
|
|
results:
|
|
- task:
|
|
name: Image Classification
|
|
type: image-classification
|
|
dataset:
|
|
name: imagefolder
|
|
type: imagefolder
|
|
config: default
|
|
split: test
|
|
args: default
|
|
metrics:
|
|
- name: Accuracy
|
|
type: accuracy
|
|
value: 0.42884199134199136
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# Boya1_SGD_1-e3_20Epoch_Deit-tiny-patch16_fold3
|
|
|
|
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 1.7155
|
|
- Accuracy: 0.4288
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 0.001
|
|
- train_batch_size: 16
|
|
- eval_batch_size: 16
|
|
- seed: 42
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- lr_scheduler_warmup_ratio: 0.1
|
|
- num_epochs: 20
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
|
| 2.4106 | 1.0 | 923 | 2.4578 | 0.2002 |
|
|
| 2.3587 | 2.0 | 1846 | 2.2972 | 0.2516 |
|
|
| 2.1274 | 3.0 | 2769 | 2.1627 | 0.3055 |
|
|
| 2.1583 | 4.0 | 3692 | 2.0604 | 0.3279 |
|
|
| 1.9036 | 5.0 | 4615 | 1.9842 | 0.3458 |
|
|
| 1.7721 | 6.0 | 5538 | 1.9243 | 0.3582 |
|
|
| 1.9867 | 7.0 | 6461 | 1.8782 | 0.3726 |
|
|
| 1.8532 | 8.0 | 7384 | 1.8428 | 0.3891 |
|
|
| 1.8503 | 9.0 | 8307 | 1.8165 | 0.4004 |
|
|
| 1.79 | 10.0 | 9230 | 1.7943 | 0.4037 |
|
|
| 1.7717 | 11.0 | 10153 | 1.7761 | 0.4091 |
|
|
| 1.7696 | 12.0 | 11076 | 1.7613 | 0.4148 |
|
|
| 1.7298 | 13.0 | 11999 | 1.7507 | 0.4191 |
|
|
| 1.7468 | 14.0 | 12922 | 1.7401 | 0.4210 |
|
|
| 1.6085 | 15.0 | 13845 | 1.7322 | 0.4229 |
|
|
| 1.7188 | 16.0 | 14768 | 1.7257 | 0.4278 |
|
|
| 1.7307 | 17.0 | 15691 | 1.7212 | 0.4259 |
|
|
| 1.5257 | 18.0 | 16614 | 1.7177 | 0.4275 |
|
|
| 1.6729 | 19.0 | 17537 | 1.7160 | 0.4294 |
|
|
| 1.7293 | 20.0 | 18460 | 1.7155 | 0.4288 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.40.1
|
|
- Pytorch 2.1.0
|
|
- Datasets 2.19.0
|
|
- Tokenizers 0.19.1
|
|
|