README.md CHANGED
@@ -1,15 +1,10 @@
1
  ---
2
- pipeline_tag: image-text-to-text
3
  language:
4
- - multilingual
 
5
  datasets:
6
- - openbmb/RLAIF-V-Dataset
7
- library_name: transformers
8
- tags:
9
- - minicpm-v
10
- - vision
11
- - ocr
12
- - custom_code
13
  ---
14
 
15
 
@@ -22,13 +17,9 @@ tags:
22
 
23
  #### 📌 Pinned
24
 
25
-
26
- * [2024.08.10] 🚀🚀🚀 MiniCPM-Llama3-V 2.5 is now fully supported by [official](https://github.com/ggerganov/llama.cpp) llama.cpp! GGUF models of various sizes are available [here](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf).
27
- * [2024.08.06] 🔥🔥🔥 We open-source [MiniCPM-V 2.6](https://huggingface.co/openbmb/MiniCPM-V-2_6), which outperforms GPT-4V on single image, multi-image and video understanding. It advances popular features of MiniCPM-Llama3-V 2.5, and can support real-time video understanding on iPad. Try it now!
28
- * [2024.08.03] MiniCPM-Llama3-V 2.5 technical report is released! See [here](https://github.com/OpenBMB/MiniCPM-V/tree/main/docs/MiniCPM_Llama3_V_25_technical_report.pdf).
29
- * [2024.07.19] MiniCPM-Llama3-V 2.5 supports vLLM now! See [here](https://github.com/OpenBMB/MiniCPM-V/tree/main?tab=readme-ov-file#vllm).
30
- * [2024.05.28] 🚀🚀🚀 MiniCPM-Llama3-V 2.5 now fully supports its feature in llama.cpp and ollama! Please pull the latest code **of our provided forks** ([llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpm-v2.5/examples/minicpmv/README.md), [ollama](https://github.com/OpenBMB/ollama/tree/minicpm-v2.5/examples/minicpm-v2.5)). GGUF models in various sizes are available [here](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf/tree/main). MiniCPM-Llama3-V 2.5 series is **not supported by the official repositories yet**, and we are working hard to merge PRs. Please stay tuned! You can visit our [GitHub](https://github.com/OpenBMB/MiniCPM-V) repository for more information!
31
  * [2024.05.28] 💫 We now support LoRA fine-tuning for MiniCPM-Llama3-V 2.5, using only 2 V100 GPUs! See more statistics [here](https://github.com/OpenBMB/MiniCPM-V/tree/main/finetune#model-fine-tuning-memory-usage-statistics).
 
32
  * [2024.05.23] 🔥🔥🔥 MiniCPM-V tops GitHub Trending and HuggingFace Trending! Our demo, recommended by Hugging Face Gradio’s official account, is available [here](https://huggingface.co/spaces/openbmb/MiniCPM-Llama3-V-2_5). Come and try it out!
33
 
34
  <br>
@@ -36,7 +27,6 @@ tags:
36
  * [2024.06.03] Now, you can run MiniCPM-Llama3-V 2.5 on multiple low VRAM GPUs(12 GB or 16 GB) by distributing the model's layers across multiple GPUs. For more details, Check this [link](https://github.com/OpenBMB/MiniCPM-V/blob/main/docs/inference_on_multiple_gpus.md).
37
  * [2024.05.25] MiniCPM-Llama3-V 2.5 now supports streaming outputs and customized system prompts. Try it at [here](#usage)
38
  * [2024.05.24] We release the [MiniCPM-Llama3-V 2.5 gguf](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf), which supports [llama.cpp](https://github.com/OpenBMB/MiniCPM-V/tree/main?tab=readme-ov-file#inference-with-llamacpp) inference and provides a 6~8 token/s smooth decoding on mobile phones. Try it now!
39
- * [2024.05.23] 🔍 We've released a comprehensive comparison between Phi-3-vision-128k-instruct and MiniCPM-Llama3-V 2.5, including benchmarks evaluations, multilingual capabilities, and inference efficiency 🌟📊🌍🚀. Click [here](https://github.com/OpenBMB/MiniCPM-V/blob/main/docs/compare_with_phi-3_vision.md) to view more details.
40
  * [2024.05.20] We open-soure MiniCPM-Llama3-V 2.5, it has improved OCR capability and supports 30+ languages, representing the first end-side MLLM achieving GPT-4V level performance! We provide [efficient inference](#deployment-on-mobile-phone) and [simple fine-tuning](https://github.com/OpenBMB/MiniCPM-V/blob/main/finetune/readme.md). Try it now!
41
 
42
 
@@ -54,7 +44,7 @@ tags:
54
  Leveraging the latest [RLAIF-V](https://github.com/RLHF-V/RLAIF-V/) method (the newest technology in the [RLHF-V](https://github.com/RLHF-V) [CVPR'24] series), MiniCPM-Llama3-V 2.5 exhibits more trustworthy behavior. It achieves **10.3%** hallucination rate on Object HalBench, lower than GPT-4V-1106 (13.6%), achieving the best-level performance within the open-source community. [Data released](https://huggingface.co/datasets/openbmb/RLAIF-V-Dataset).
55
 
56
  - 🌏 **Multilingual Support.**
57
- Thanks to the strong multilingual capabilities of Llama 3 and the cross-lingual generalization technique from [VisCPM](https://github.com/OpenBMB/VisCPM), MiniCPM-Llama3-V 2.5 extends its bilingual (Chinese-English) multimodal capabilities to **over 30 languages including German, French, Spanish, Italian, Korean, Japanese etc.** [All Supported Languages](./assets/minicpm-llama-v-2-5_languages.md).
58
 
59
  - 🚀 **Efficient Deployment.**
60
  MiniCPM-Llama3-V 2.5 systematically employs **model quantization, CPU optimizations, NPU optimizations and compilation optimizations**, achieving high-efficiency deployment on edge devices. For mobile phones with Qualcomm chips, we have integrated the NPU acceleration framework QNN into llama.cpp for the first time. After systematic optimization, MiniCPM-Llama3-V 2.5 has realized a **150-fold acceleration in multimodal large model end-side image encoding** and a **3-fold increase in language decoding speed**.
@@ -186,21 +176,37 @@ Please see the info about MiniCPM-V 2.0 [here](https://huggingface.co/openbmb/Mi
186
  * As an LLM, MiniCPM-Llama3-V 2.5 generates contents by learning a large mount of texts, but it cannot comprehend, express personal opinions or make value judgement. Anything generated by MiniCPM-Llama3-V 2.5 does not represent the views and positions of the model developers
187
  * We will not be liable for any problems arising from the use of the MinCPM-V open Source model, including but not limited to data security issues, risk of public opinion, or any risks and problems arising from the misdirection, misuse, dissemination or misuse of the model.
188
 
189
- ## Key Techniques and Other Multimodal Projects
190
-
191
- 👏 Welcome to explore key techniques of MiniCPM-V 2.6 and other multimodal projects of our team:
192
 
193
  [VisCPM](https://github.com/OpenBMB/VisCPM/tree/main) | [RLHF-V](https://github.com/RLHF-V/RLHF-V) | [LLaVA-UHD](https://github.com/thunlp/LLaVA-UHD) | [RLAIF-V](https://github.com/RLHF-V/RLAIF-V)
194
 
195
  ## Citation
196
 
197
- If you find our work helpful, please consider citing our papers 📝 and liking this project ❤️!
198
 
199
  ```bib
200
- @article{yao2024minicpmv,
201
- title={MiniCPM-V: A GPT-4V Level MLLM on Your Phone},
202
- author={Yao, Yuan and Yu, Tianyu and Zhang, Ao and Wang, Chongyi and Cui, Junbo and Zhu, Hongji and Cai, Tianchi and Li, Haoyu and Zhao, Weilin and He, Zhihui and Chen, Qianyu and Zhou, Huarong and Zou, Zhensheng and Zhang, Haoye and Hu, Shengding and Zheng, Zhi and Zhou, Jie and Cai, Jie and Han, Xu and Zeng, Guoyang and Li, Dahai and Liu, Zhiyuan and Sun, Maosong},
203
- journal={arXiv preprint 2408.01800},
204
- year={2024},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
205
  }
206
  ```
 
1
  ---
2
+ pipeline_tag: visual-question-answering
3
  language:
4
+ - en
5
+ - zh
6
  datasets:
7
+ - HaoyeZhang/RLAIF-V-Dataset
 
 
 
 
 
 
8
  ---
9
 
10
 
 
17
 
18
  #### 📌 Pinned
19
 
20
+ * [2024.05.28] 🚀🚀🚀 MiniCPM-Llama3-V 2.5 now fully supports its features in llama.cpp and ollama! Please pull the latest code **of our provided forks** ([llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpm-v2.5/examples/minicpmv/README.md), [ollama](https://github.com/OpenBMB/ollama/tree/minicpm-v2.5)). GGUF models in various sizes are available [here](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf/tree/main). We are working hard to merge PRs into official repositories. Please stay tuned! You can visit our [GitHub](https://github.com/OpenBMB/MiniCPM-V) repository for more information!
 
 
 
 
 
21
  * [2024.05.28] 💫 We now support LoRA fine-tuning for MiniCPM-Llama3-V 2.5, using only 2 V100 GPUs! See more statistics [here](https://github.com/OpenBMB/MiniCPM-V/tree/main/finetune#model-fine-tuning-memory-usage-statistics).
22
+ * [2024.05.23] 🔍 We've released a comprehensive comparison between Phi-3-vision-128k-instruct and MiniCPM-Llama3-V 2.5, including benchmarks evaluations, multilingual capabilities, and inference efficiency 🌟📊🌍🚀. Click [here](https://github.com/OpenBMB/MiniCPM-V/blob/main/docs/compare_with_phi-3_vision.md) to view more details.
23
  * [2024.05.23] 🔥🔥🔥 MiniCPM-V tops GitHub Trending and HuggingFace Trending! Our demo, recommended by Hugging Face Gradio’s official account, is available [here](https://huggingface.co/spaces/openbmb/MiniCPM-Llama3-V-2_5). Come and try it out!
24
 
25
  <br>
 
27
  * [2024.06.03] Now, you can run MiniCPM-Llama3-V 2.5 on multiple low VRAM GPUs(12 GB or 16 GB) by distributing the model's layers across multiple GPUs. For more details, Check this [link](https://github.com/OpenBMB/MiniCPM-V/blob/main/docs/inference_on_multiple_gpus.md).
28
  * [2024.05.25] MiniCPM-Llama3-V 2.5 now supports streaming outputs and customized system prompts. Try it at [here](#usage)
29
  * [2024.05.24] We release the [MiniCPM-Llama3-V 2.5 gguf](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf), which supports [llama.cpp](https://github.com/OpenBMB/MiniCPM-V/tree/main?tab=readme-ov-file#inference-with-llamacpp) inference and provides a 6~8 token/s smooth decoding on mobile phones. Try it now!
 
30
  * [2024.05.20] We open-soure MiniCPM-Llama3-V 2.5, it has improved OCR capability and supports 30+ languages, representing the first end-side MLLM achieving GPT-4V level performance! We provide [efficient inference](#deployment-on-mobile-phone) and [simple fine-tuning](https://github.com/OpenBMB/MiniCPM-V/blob/main/finetune/readme.md). Try it now!
31
 
32
 
 
44
  Leveraging the latest [RLAIF-V](https://github.com/RLHF-V/RLAIF-V/) method (the newest technology in the [RLHF-V](https://github.com/RLHF-V) [CVPR'24] series), MiniCPM-Llama3-V 2.5 exhibits more trustworthy behavior. It achieves **10.3%** hallucination rate on Object HalBench, lower than GPT-4V-1106 (13.6%), achieving the best-level performance within the open-source community. [Data released](https://huggingface.co/datasets/openbmb/RLAIF-V-Dataset).
45
 
46
  - 🌏 **Multilingual Support.**
47
+ Thanks to the strong multilingual capabilities of Llama 3 and the cross-lingual generalization technique from [VisCPM](https://github.com/OpenBMB/VisCPM), MiniCPM-Llama3-V 2.5 extends its bilingual (Chinese-English) multimodal capabilities to **over 30 languages including German, French, Spanish, Italian, Russian etc.** [All Supported Languages](./assets/minicpm-llama-v-2-5_languages.md).
48
 
49
  - 🚀 **Efficient Deployment.**
50
  MiniCPM-Llama3-V 2.5 systematically employs **model quantization, CPU optimizations, NPU optimizations and compilation optimizations**, achieving high-efficiency deployment on edge devices. For mobile phones with Qualcomm chips, we have integrated the NPU acceleration framework QNN into llama.cpp for the first time. After systematic optimization, MiniCPM-Llama3-V 2.5 has realized a **150-fold acceleration in multimodal large model end-side image encoding** and a **3-fold increase in language decoding speed**.
 
176
  * As an LLM, MiniCPM-Llama3-V 2.5 generates contents by learning a large mount of texts, but it cannot comprehend, express personal opinions or make value judgement. Anything generated by MiniCPM-Llama3-V 2.5 does not represent the views and positions of the model developers
177
  * We will not be liable for any problems arising from the use of the MinCPM-V open Source model, including but not limited to data security issues, risk of public opinion, or any risks and problems arising from the misdirection, misuse, dissemination or misuse of the model.
178
 
179
+ ## Other Multimodal Projects from Our Team
 
 
180
 
181
  [VisCPM](https://github.com/OpenBMB/VisCPM/tree/main) | [RLHF-V](https://github.com/RLHF-V/RLHF-V) | [LLaVA-UHD](https://github.com/thunlp/LLaVA-UHD) | [RLAIF-V](https://github.com/RLHF-V/RLAIF-V)
182
 
183
  ## Citation
184
 
185
+ If you find our work helpful, please consider citing the following papers
186
 
187
  ```bib
188
+ @article{yu2023rlhf,
189
+ title={Rlhf-v: Towards trustworthy mllms via behavior alignment from fine-grained correctional human feedback},
190
+ author={Yu, Tianyu and Yao, Yuan and Zhang, Haoye and He, Taiwen and Han, Yifeng and Cui, Ganqu and Hu, Jinyi and Liu, Zhiyuan and Zheng, Hai-Tao and Sun, Maosong and others},
191
+ journal={arXiv preprint arXiv:2312.00849},
192
+ year={2023}
193
+ }
194
+ @article{viscpm,
195
+ title={Large Multilingual Models Pivot Zero-Shot Multimodal Learning across Languages},
196
+ author={Jinyi Hu and Yuan Yao and Chongyi Wang and Shan Wang and Yinxu Pan and Qianyu Chen and Tianyu Yu and Hanghao Wu and Yue Zhao and Haoye Zhang and Xu Han and Yankai Lin and Jiao Xue and Dahai Li and Zhiyuan Liu and Maosong Sun},
197
+ journal={arXiv preprint arXiv:2308.12038},
198
+ year={2023}
199
+ }
200
+ @article{xu2024llava-uhd,
201
+ title={{LLaVA-UHD}: an LMM Perceiving Any Aspect Ratio and High-Resolution Images},
202
+ author={Xu, Ruyi and Yao, Yuan and Guo, Zonghao and Cui, Junbo and Ni, Zanlin and Ge, Chunjiang and Chua, Tat-Seng and Liu, Zhiyuan and Huang, Gao},
203
+ journal={arXiv preprint arXiv:2403.11703},
204
+ year={2024}
205
+ }
206
+ @article{yu2024rlaifv,
207
+ title={RLAIF-V: Aligning MLLMs through Open-Source AI Feedback for Super GPT-4V Trustworthiness},
208
+ author={Yu, Tianyu and Zhang, Haoye and Yao, Yuan and Dang, Yunkai and Chen, Da and Lu, Xiaoman and Cui, Ganqu and He, Taiwen and Liu, Zhiyuan and Chua, Tat-Seng and Sun, Maosong},
209
+ journal={arXiv preprint arXiv:2405.17220},
210
+ year={2024},
211
  }
212
  ```
config.json CHANGED
@@ -1,6 +1,5 @@
1
  {
2
  "_name_or_path": "openbmb/MiniCPM-Llama3-V-2_5",
3
- "version": "2.5",
4
  "architectures": [
5
  "MiniCPMV"
6
  ],
 
1
  {
2
  "_name_or_path": "openbmb/MiniCPM-Llama3-V-2_5",
 
3
  "architectures": [
4
  "MiniCPMV"
5
  ],
configuration.json DELETED
@@ -1 +0,0 @@
1
- {"framework":"Pytorch","task":"multimodal-dialogue"}
 
 
image_processing_minicpmv.py DELETED
@@ -1,402 +0,0 @@
1
- from typing import Optional, Union, Dict, Any
2
-
3
- import torch
4
- import math
5
- import PIL.Image
6
- import PIL.ImageSequence
7
- import numpy as np
8
- import PIL
9
- from PIL import Image
10
-
11
- from transformers.utils import TensorType, requires_backends, is_torch_dtype, is_torch_device
12
- from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
13
- from transformers import AutoImageProcessor
14
- from transformers.image_transforms import to_channel_dimension_format
15
- from transformers.image_utils import (
16
- ImageInput,
17
- make_list_of_images,
18
- valid_images,
19
- is_torch_tensor,
20
- to_numpy_array,
21
- infer_channel_dimension_format,
22
- ChannelDimension
23
- )
24
-
25
-
26
- def recursive_converter(converter, value):
27
- if isinstance(value, list):
28
- new_value = []
29
- for v in value:
30
- new_value += [recursive_converter(converter, v)]
31
- return new_value
32
- else:
33
- return converter(value)
34
-
35
-
36
- class MiniCPMVBatchFeature(BatchFeature):
37
- r"""
38
- Extend from BatchFeature for supporting various image size
39
- """
40
- def __init__(self, data: Optional[Dict[str, Any]] = None, tensor_type: Union[None, str, TensorType] = None):
41
- super().__init__(data)
42
- self.convert_to_tensors(tensor_type=tensor_type)
43
-
44
- def convert_to_tensors(self, tensor_type: Optional[Union[str, TensorType]] = None):
45
- if tensor_type is None:
46
- return self
47
-
48
- is_tensor, as_tensor = self._get_is_as_tensor_fns(tensor_type)
49
-
50
- def converter(value):
51
- try:
52
- if not is_tensor(value):
53
- tensor = as_tensor(value)
54
- return tensor
55
- except: # noqa E722
56
- if key == "overflowing_values":
57
- raise ValueError("Unable to create tensor returning overflowing values of different lengths. ")
58
- raise ValueError(
59
- "Unable to create tensor, you should probably activate padding "
60
- "with 'padding=True' to have batched tensors with the same length."
61
- )
62
-
63
-
64
- for key, value in self.items():
65
- self[key] = recursive_converter(converter, value)
66
- return self
67
-
68
- def to(self, *args, **kwargs) -> "MiniCPMVBatchFeature":
69
- requires_backends(self, ["torch"])
70
- import torch
71
-
72
- def cast_tensor(v):
73
- # check if v is a floating point
74
- if torch.is_floating_point(v):
75
- # cast and send to device
76
- return v.to(*args, **kwargs)
77
- elif device is not None:
78
- return v.to(device=device)
79
- else:
80
- return v
81
-
82
- new_data = {}
83
- device = kwargs.get("device")
84
- # Check if the args are a device or a dtype
85
- if device is None and len(args) > 0:
86
- # device should be always the first argument
87
- arg = args[0]
88
- if is_torch_dtype(arg):
89
- # The first argument is a dtype
90
- pass
91
- elif isinstance(arg, str) or is_torch_device(arg) or isinstance(arg, int):
92
- device = arg
93
- else:
94
- # it's something else
95
- raise ValueError(f"Attempting to cast a BatchFeature to type {str(arg)}. This is not supported.")
96
- # We cast only floating point tensors to avoid issues with tokenizers casting `LongTensor` to `FloatTensor`
97
- for k, v in self.items():
98
- new_data[k] = recursive_converter(cast_tensor, v)
99
- self.data = new_data
100
- return self
101
-
102
-
103
- class MiniCPMVImageProcessor(BaseImageProcessor):
104
- model_input_names = ["pixel_values"]
105
-
106
- def __init__(
107
- self,
108
- max_slice_nums=9,
109
- scale_resolution=448,
110
- patch_size=14,
111
- **kwargs):
112
- super().__init__(**kwargs)
113
- self.max_slice_nums = max_slice_nums
114
- self.scale_resolution = scale_resolution
115
- self.patch_size = patch_size
116
- self.image_feature_size = kwargs.pop("image_feature_size", 64)
117
- self.im_start_token = kwargs.pop("im_start", "<image>")
118
- self.im_end_token = kwargs.pop("im_end", "</image>")
119
- self.slice_start_token = kwargs.pop("slice_start", "<slice>")
120
- self.slice_end_token = kwargs.pop("slice_end", "</slice>")
121
- self.unk_token = kwargs.pop("unk", "<unk>")
122
- self.mean = np.array(kwargs.pop("norm_mean", [0.5, 0.5, 0.5]))
123
- self.std = np.array(kwargs.pop("norm_std", [0.5, 0.5, 0.5]))
124
- self.version = kwargs.pop("version", 2.0)
125
-
126
- def ensure_divide(self, length, patch_size):
127
- return max(round(length / patch_size) * patch_size, patch_size)
128
-
129
- def find_best_resize(self,
130
- original_size,
131
- scale_resolution,
132
- patch_size,
133
- allow_upscale=False):
134
- width, height = original_size
135
- if (width * height >
136
- scale_resolution * scale_resolution) or allow_upscale:
137
- r = width / height
138
- height = int(scale_resolution / math.sqrt(r))
139
- width = int(height * r)
140
- best_width = self.ensure_divide(width, patch_size)
141
- best_height = self.ensure_divide(height, patch_size)
142
- return (best_width, best_height)
143
-
144
- def get_refine_size(self,
145
- original_size,
146
- grid,
147
- scale_resolution,
148
- patch_size,
149
- allow_upscale=False):
150
- width, height = original_size
151
- grid_x, grid_y = grid
152
-
153
- refine_width = self.ensure_divide(width, grid_x)
154
- refine_height = self.ensure_divide(height, grid_y)
155
-
156
- grid_width = refine_width / grid_x
157
- grid_height = refine_height / grid_y
158
-
159
- best_grid_size = self.find_best_resize((grid_width, grid_height),
160
- scale_resolution,
161
- patch_size,
162
- allow_upscale=allow_upscale)
163
- refine_size = (best_grid_size[0] * grid_x, best_grid_size[1] * grid_y)
164
- return refine_size
165
-
166
- def split_to_patches(self, image, grid):
167
- patches = []
168
- width, height = image.size
169
- grid_x = int(width / grid[0])
170
- grid_y = int(height / grid[1])
171
- for i in range(0, height, grid_y):
172
- images = []
173
- for j in range(0, width, grid_x):
174
- box = (j, i, j + grid_x, i + grid_y)
175
- patch = image.crop(box)
176
- images.append(patch)
177
- patches.append(images)
178
- return patches
179
-
180
- def slice_image(
181
- self, image, max_slice_nums=9, scale_resolution=448, patch_size=14, never_split=False
182
- ):
183
- original_size = image.size
184
- original_width, original_height = original_size
185
- log_ratio = math.log(original_width / original_height)
186
- ratio = original_width * original_height / (scale_resolution * scale_resolution)
187
- multiple = min(math.ceil(ratio), max_slice_nums)
188
-
189
- source_image = None
190
- best_grid = None
191
- patches = []
192
-
193
- if multiple <= 1 or never_split:
194
- # dont need to slice, upsample
195
- best_size = self.find_best_resize(
196
- original_size, scale_resolution, patch_size, allow_upscale=True
197
- )
198
- source_image = image.resize(best_size, resample=Image.Resampling.BICUBIC)
199
- else:
200
- candidate_split_grids_nums = []
201
- for i in [multiple - 1, multiple, multiple + 1]:
202
- if i == 1 or i > max_slice_nums:
203
- continue
204
- candidate_split_grids_nums.append(i)
205
-
206
- # source image, down-sampling and ensure divided by patch_size
207
- best_resize = self.find_best_resize(original_size, scale_resolution, patch_size)
208
- source_image = image.copy().resize(best_resize, resample=Image.Resampling.BICUBIC)
209
- candidate_grids = []
210
-
211
- # find best grid
212
- for split_grids_nums in candidate_split_grids_nums:
213
- m = 1
214
- while m <= split_grids_nums:
215
- if split_grids_nums % m == 0:
216
- candidate_grids.append([m, split_grids_nums // m])
217
- m += 1
218
-
219
- best_grid = [1, 1]
220
- min_error = float("inf")
221
- for grid in candidate_grids:
222
- error = abs(log_ratio - math.log(grid[0] / grid[1]))
223
- if error < min_error:
224
- best_grid = grid
225
- min_error = error
226
-
227
- refine_size = self.get_refine_size(
228
- original_size, best_grid, scale_resolution, patch_size, allow_upscale=True
229
- )
230
-
231
- refine_image = image.resize(refine_size, resample=Image.Resampling.BICUBIC)
232
- patches = self.split_to_patches(refine_image, best_grid)
233
-
234
- return source_image, patches, best_grid
235
-
236
- def get_grid_placeholder(self, grid):
237
- if grid is None:
238
- return ""
239
- image_placeholder = (
240
- self.im_start_token
241
- + self.unk_token * self.image_feature_size
242
- + self.im_end_token
243
- )
244
-
245
- cols = grid[0]
246
- rows = grid[1]
247
- slices = []
248
- for i in range(rows):
249
- lines = []
250
- for j in range(cols):
251
- lines.append(image_placeholder)
252
- slices.append("".join(lines))
253
-
254
- slice_placeholder = self.slice_start_token + "\n".join(slices) + self.slice_end_token
255
- return slice_placeholder
256
-
257
- def get_sliced_images(self, image):
258
- slice_images = []
259
-
260
- source_image, patches, sliced_grid = self.slice_image(
261
- image,
262
- self.max_slice_nums, # default: 9
263
- self.scale_resolution, # default: 448
264
- self.patch_size # default: 14
265
- )
266
- slice_images.append(source_image)
267
-
268
- if len(patches) > 0:
269
- for i in range(len(patches)):
270
- for j in range(len(patches[0])):
271
- slice_images.append(patches[i][j])
272
- return slice_images
273
-
274
- def get_sliced_grid(self, image_size):
275
- original_width, original_height = image_size
276
- log_ratio = math.log(original_width / original_height)
277
- ratio = original_width * original_height / (self.scale_resolution * self.scale_resolution)
278
- multiple = min(math.ceil(ratio), self.max_slice_nums)
279
- if multiple <= 1:
280
- return None
281
- candidate_split_grids_nums = []
282
- for i in [multiple - 1, multiple, multiple + 1]:
283
- if i == 1 or i > self.max_slice_nums:
284
- continue
285
- candidate_split_grids_nums.append(i)
286
-
287
- candidate_grids = []
288
- for split_grids_nums in candidate_split_grids_nums:
289
- m = 1
290
- while m <= split_grids_nums:
291
- if split_grids_nums % m == 0:
292
- candidate_grids.append([m, split_grids_nums // m])
293
- m += 1
294
-
295
- best_grid = [1, 1]
296
- min_error = float("inf")
297
- for grid in candidate_grids:
298
- error = abs(log_ratio - math.log(grid[0] / grid[1]))
299
- if error < min_error:
300
- best_grid = grid
301
- min_error = error
302
-
303
- return best_grid
304
-
305
- def get_slice_image_placeholder(self, image_size):
306
- grid = self.get_sliced_grid(image_size=image_size)
307
- return (
308
- self.im_start_token
309
- + self.unk_token * self.image_feature_size
310
- + self.im_end_token
311
- ) + self.get_grid_placeholder(grid=grid)
312
-
313
- def to_pil_image(self, image, rescale=None) -> PIL.Image.Image:
314
- """
315
- Converts `image` to a PIL Image. Optionally rescales it and puts the channel dimension back as the last axis if
316
- needed.
317
-
318
- Args:
319
- image (`PIL.Image.Image` or `numpy.ndarray` or `torch.Tensor`):
320
- The image to convert to the PIL Image format.
321
- rescale (`bool`, *optional*):
322
- Whether or not to apply the scaling factor (to make pixel values integers between 0 and 255). Will
323
- default to `True` if the image type is a floating type, `False` otherwise.
324
- """
325
- if isinstance(image, PIL.Image.Image):
326
- return image
327
- if is_torch_tensor(image):
328
- image = image.numpy()
329
-
330
- if isinstance(image, np.ndarray):
331
- if rescale is None:
332
- # rescale default to the array being of floating type.
333
- rescale = isinstance(image.flat[0], np.floating)
334
- # If the channel as been moved to first dim, we put it back at the end.
335
- if image.ndim == 3 and image.shape[0] in [1, 3]:
336
- image = image.transpose(1, 2, 0)
337
- if rescale:
338
- image = image * 255
339
- image = image.astype(np.uint8)
340
- return PIL.Image.fromarray(image)
341
- return image
342
-
343
- def reshape_by_patch(self, image):
344
- """
345
- :param image: shape [3, H, W]
346
- :param patch_size:
347
- :return: [3, patch_size, HW/patch_size]
348
- """
349
- image = torch.from_numpy(image)
350
- patch_size = self.patch_size
351
- patches = torch.nn.functional.unfold(
352
- image,
353
- (patch_size, patch_size),
354
- stride=(patch_size, patch_size)
355
- )
356
-
357
- patches = patches.reshape(image.size(0), patch_size, patch_size, -1)
358
- patches = patches.permute(0, 1, 3, 2).reshape(image.size(0), patch_size, -1)
359
- return patches.numpy()
360
-
361
- def preprocess(
362
- self,
363
- images: ImageInput,
364
- do_pad: Optional[bool] = True, # TODO: add pad for MiniCPM-Llama3-V-2_5
365
- return_tensors: Optional[Union[str, TensorType]] = None
366
- ) -> MiniCPMVBatchFeature:
367
- images = make_list_of_images(images)
368
-
369
- if not valid_images(images):
370
- raise ValueError(
371
- "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
372
- "torch.Tensor, tf.Tensor or jax.ndarray."
373
- )
374
-
375
- images = [self.to_pil_image(image).convert("RGB") for image in images]
376
- input_data_format = infer_channel_dimension_format(np.array(images[0]))
377
-
378
- new_images = []
379
- image_sizes = [image.size for image in images]
380
- tgt_sizes = []
381
- for image in images:
382
- image_patches = self.get_sliced_images(image)
383
- image_patches = [to_numpy_array(image).astype(np.float32) / 255 for image in image_patches]
384
- image_patches = [
385
- self.normalize(image=image, mean=self.mean, std=self.std, input_data_format=input_data_format)
386
- for image in image_patches
387
- ]
388
- image_patches = [
389
- to_channel_dimension_format(image, ChannelDimension.FIRST, input_channel_dim=input_data_format)
390
- for image in image_patches
391
- ]
392
- for slice_image in image_patches:
393
- new_images.append(self.reshape_by_patch(slice_image))
394
- tgt_sizes.append(np.array((slice_image.shape[1] // self.patch_size, slice_image.shape[2] // self.patch_size)))
395
-
396
- if tgt_sizes:
397
- tgt_sizes = np.vstack(tgt_sizes)
398
- return MiniCPMVBatchFeature(
399
- data={"pixel_values": [new_images], "image_sizes": [image_sizes], "tgt_sizes": [tgt_sizes]}, tensor_type=return_tensors
400
- )
401
-
402
- AutoImageProcessor.register("MiniCPMVImageProcessor", MiniCPMVImageProcessor)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
modeling_minicpmv.py CHANGED
@@ -1,13 +1,14 @@
1
  import math
 
2
  import json
3
  import torch
 
4
  from threading import Thread
5
  from copy import deepcopy
6
  from PIL import Image
7
  from torchvision import transforms
8
- from transformers import LlamaPreTrainedModel, LlamaForCausalLM, TextIteratorStreamer
9
  from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer
10
- from transformers import AutoProcessor
11
 
12
  from .configuration_minicpm import MiniCPMVConfig
13
  from .resampler import Resampler
@@ -66,22 +67,10 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
66
  def set_input_embeddings(self, value):
67
  self.llm.embed_tokens = value
68
 
69
- def get_output_embeddings(self):
70
- return self.llm.lm_head
71
-
72
- def set_output_embeddings(self, new_embeddings):
73
- self.llm.lm_head = new_embeddings
74
-
75
- def set_decoder(self, decoder):
76
- self.llm = decoder
77
-
78
- def get_decoder(self):
79
- return self.llm
80
-
81
  def get_vllm_embedding(self, data):
82
  if 'vision_hidden_states' not in data:
83
- dtype = self.llm.model.embed_tokens.weight.dtype
84
- device = self.llm.model.embed_tokens.weight.device
85
  tgt_sizes = data['tgt_sizes']
86
  pixel_values_list = data['pixel_values']
87
  vision_hidden_states = []
@@ -90,7 +79,7 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
90
  for pixel_values in pixel_values_list:
91
  img_cnt.append(len(pixel_values))
92
  all_pixel_values.extend([i.flatten(end_dim=1).permute(1, 0) for i in pixel_values])
93
-
94
  # exist image
95
  if all_pixel_values:
96
  tgt_sizes = torch.vstack(tgt_sizes).type(torch.int32)
@@ -168,7 +157,7 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
168
  cur_vs_hs.view(-1, cur_vs_hs.shape[-1]))
169
  elif self.training:
170
  cur_vllm_emb += cur_vs_hs[0].mean() * 0
171
-
172
  return vllm_embedding, vision_hidden_states
173
 
174
  def forward(self, data, **kwargs):
@@ -184,18 +173,47 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
184
  **kwargs
185
  )
186
 
187
- def _decode_text(self, result_ids, tokenizer):
188
- result_text = []
189
- for result in result_ids:
190
- result = result[result != 0]
191
- if result[0] == tokenizer.bos_id:
192
- result = result[1:]
193
- if result[-1] == tokenizer.eos_id or result[-1] == tokenizer.eot_id:
194
- result = result[:-1]
195
- result_text.append(tokenizer.decode(result).strip())
196
- return result_text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
197
 
198
- def _decode(self, inputs_embeds, tokenizer, decode_text=False, **kwargs):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199
  terminators = [
200
  tokenizer.eos_token_id,
201
  tokenizer.convert_tokens_to_ids("<|eot_id|>")
@@ -206,9 +224,7 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
206
  eos_token_id=terminators,
207
  **kwargs
208
  )
209
- if decode_text:
210
- return self._decode_text(output, tokenizer)
211
- return output
212
 
213
  def _decode_stream(self, inputs_embeds, tokenizer, **kwargs):
214
  terminators = [
@@ -229,20 +245,93 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
229
 
230
  return streamer
231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
232
  def generate(
233
  self,
234
- model_inputs,
 
 
235
  tokenizer=None,
 
236
  vision_hidden_states=None,
 
237
  stream=False,
238
  **kwargs
239
  ):
240
- bs = len(model_inputs["input_ids"])
241
- img_list = model_inputs["pixel_values"]
242
- tgt_sizes = model_inputs["tgt_sizes"]
243
- if img_list is None:
244
  img_list = [[] for i in range(bs)]
245
  assert bs == len(img_list)
 
 
 
246
  if vision_hidden_states is None:
247
  pixel_values = []
248
  for i in range(bs):
@@ -258,17 +347,19 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
258
  else:
259
  model_inputs["vision_hidden_states"] = vision_hidden_states
260
 
261
- (
262
- input_embeds,
263
- vision_hidden_states,
264
- ) = self.get_vllm_embedding(model_inputs)
 
265
 
266
- # output_ids = self._decode(input_embeds, tokenizer, **kwargs)
267
- if stream:
268
- kwargs.pop("decode_text")
269
- result = self._decode_stream(input_embeds, tokenizer, **kwargs)
270
- else:
271
- result = self._decode(input_embeds, tokenizer, **kwargs)
 
272
 
273
  return result
274
 
@@ -277,7 +368,6 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
277
  image,
278
  msgs,
279
  tokenizer,
280
- processor=None,
281
  vision_hidden_states=None,
282
  max_new_tokens=1024,
283
  sampling=True,
@@ -286,20 +376,18 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
286
  stream=False,
287
  **kwargs
288
  ):
289
- if processor is None:
290
- processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True)
291
  if isinstance(msgs, str):
292
  msgs = json.loads(msgs)
293
- copy_msgs = deepcopy(msgs)
294
 
295
- assert len(msgs) > 0, "msgs is empty"
296
- assert sampling or not stream, "if use stream mode, make sure sampling=True"
 
297
 
298
- if image is not None and isinstance(copy_msgs[0]["content"], str):
299
- # copy_msgs[0]['content'] = '(<image>./</image>)\n' + copy_msgs[0]['content']
300
- copy_msgs[0]["content"] = [image, copy_msgs[0]["content"]]
301
 
302
  images = []
 
303
  for i, msg in enumerate(copy_msgs):
304
  role = msg["role"]
305
  content = msg["content"]
@@ -308,21 +396,41 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
308
  assert role == "user", "The role of first msg should be user"
309
  if isinstance(content, str):
310
  content = [content]
 
311
  cur_msgs = []
312
  for c in content:
313
  if isinstance(c, Image.Image):
314
- images.append(c)
315
- cur_msgs.append("(<image>./</image>)")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
316
  elif isinstance(c, str):
317
  cur_msgs.append(c)
318
- msg["content"] = "\n".join(cur_msgs)
 
 
 
 
319
 
320
  if system_prompt:
321
  sys_msg = {'role': 'system', 'content': system_prompt}
322
- copy_msgs = [sys_msg] + copy_msgs
323
 
324
- prompt = processor.tokenizer.apply_chat_template(copy_msgs, tokenize=False, add_generation_prompt=True)
325
- inputs = processor(prompt, images, return_tensors="pt", max_length=max_inp_length).to(self.device)
326
 
327
  if sampling:
328
  generation_config = {
@@ -341,17 +449,21 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
341
  generation_config.update(
342
  (k, kwargs[k]) for k in generation_config.keys() & kwargs.keys()
343
  )
 
344
  with torch.inference_mode():
345
- res = self.generate(
346
- inputs,
 
 
 
347
  tokenizer=tokenizer,
348
  max_new_tokens=max_new_tokens,
349
  vision_hidden_states=vision_hidden_states,
 
350
  stream=stream,
351
- decode_text=True,
352
  **generation_config
353
  )
354
-
355
  if stream:
356
  def stream_gen():
357
  for text in res:
@@ -362,3 +474,229 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
362
  else:
363
  answer = res[0]
364
  return answer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import math
2
+ from typing import List, Optional
3
  import json
4
  import torch
5
+ import torchvision
6
  from threading import Thread
7
  from copy import deepcopy
8
  from PIL import Image
9
  from torchvision import transforms
10
+ from transformers import LlamaTokenizer, LlamaPreTrainedModel, LlamaForCausalLM, AutoModel, PreTrainedTokenizerFast, TextIteratorStreamer
11
  from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer
 
12
 
13
  from .configuration_minicpm import MiniCPMVConfig
14
  from .resampler import Resampler
 
67
  def set_input_embeddings(self, value):
68
  self.llm.embed_tokens = value
69
 
 
 
 
 
 
 
 
 
 
 
 
 
70
  def get_vllm_embedding(self, data):
71
  if 'vision_hidden_states' not in data:
72
+ dtype = self.vpm.embeddings.position_embedding.weight.dtype
73
+ device = self.vpm.embeddings.position_embedding.weight.device
74
  tgt_sizes = data['tgt_sizes']
75
  pixel_values_list = data['pixel_values']
76
  vision_hidden_states = []
 
79
  for pixel_values in pixel_values_list:
80
  img_cnt.append(len(pixel_values))
81
  all_pixel_values.extend([i.flatten(end_dim=1).permute(1, 0) for i in pixel_values])
82
+
83
  # exist image
84
  if all_pixel_values:
85
  tgt_sizes = torch.vstack(tgt_sizes).type(torch.int32)
 
157
  cur_vs_hs.view(-1, cur_vs_hs.shape[-1]))
158
  elif self.training:
159
  cur_vllm_emb += cur_vs_hs[0].mean() * 0
160
+
161
  return vllm_embedding, vision_hidden_states
162
 
163
  def forward(self, data, **kwargs):
 
173
  **kwargs
174
  )
175
 
176
+ def _convert_to_tensors(
177
+ self, tokenizer, input_ids, max_inp_length: Optional[int] = None
178
+ ):
179
+ if max_inp_length is not None:
180
+ input_ids = input_ids[:max_inp_length]
181
+ input_ids = torch.tensor(input_ids, dtype=torch.int32)
182
+
183
+ image_start_tokens = torch.where(input_ids == tokenizer.im_start_id)[0]
184
+ # 跳过 im_start
185
+ image_start_tokens += 1
186
+ image_end_tokens = torch.where(input_ids == tokenizer.im_end_id)[0]
187
+ valid_image_nums = max(len(image_start_tokens), len(image_end_tokens))
188
+ image_bound = torch.hstack(
189
+ [
190
+ image_start_tokens[:valid_image_nums].unsqueeze(-1),
191
+ image_end_tokens[:valid_image_nums].unsqueeze(-1),
192
+ ]
193
+ )
194
+
195
+ model_input = {}
196
+ model_input["input_ids"] = input_ids.unsqueeze(0).to(self.device)
197
+ model_input["image_bound"] = image_bound
198
+
199
+ return model_input
200
 
201
+ def _process_list(
202
+ self, tokenizer, input_id_list, max_inp_length: Optional[int] = None
203
+ ):
204
+ pad_keys = ["input_ids"]
205
+ input_tensors = []
206
+ for input_ids in input_id_list:
207
+ input_tensors.append(
208
+ self._convert_to_tensors(tokenizer, input_ids, max_inp_length)
209
+ )
210
+ padded = {}
211
+ for key in pad_keys:
212
+ padded[key] = pad(input_tensors, key, padding_side="left").to(self.device)
213
+ padded["image_bound"] = [i["image_bound"] for i in input_tensors]
214
+ return padded
215
+
216
+ def _decode(self, inputs_embeds, tokenizer, **kwargs):
217
  terminators = [
218
  tokenizer.eos_token_id,
219
  tokenizer.convert_tokens_to_ids("<|eot_id|>")
 
224
  eos_token_id=terminators,
225
  **kwargs
226
  )
227
+ return self._decode_text(output, tokenizer)
 
 
228
 
229
  def _decode_stream(self, inputs_embeds, tokenizer, **kwargs):
230
  terminators = [
 
245
 
246
  return streamer
247
 
248
+ def _decode_text(self, result_ids, tokenizer):
249
+ result_text = []
250
+ for result in result_ids:
251
+ result = result[result != 0]
252
+ if result[0] == tokenizer.bos_id:
253
+ result = result[1:]
254
+ if result[-1] == tokenizer.eos_id or result[-1] == tokenizer.eot_id:
255
+ result = result[:-1]
256
+ result_text.append(tokenizer.decode(result).strip())
257
+ return result_text
258
+
259
+ def slice_image(self, image):
260
+ return slice_image(
261
+ image,
262
+ self.config.slice_config.max_slice_nums,
263
+ self.config.slice_config.scale_resolution,
264
+ self.config.slice_config.patch_size,
265
+ )
266
+
267
+ def get_slice_image_placeholder(self, image, tokenizer):
268
+ image_placeholder = (
269
+ tokenizer.im_start
270
+ + tokenizer.unk_token * self.config.query_num
271
+ + tokenizer.im_end
272
+ )
273
+
274
+ slice_images = []
275
+
276
+ source_image, patches, best_grid = slice_image(
277
+ image,
278
+ self.config.slice_config.max_slice_nums,
279
+ self.config.slice_config.scale_resolution,
280
+ self.config.slice_config.patch_size,
281
+ )
282
+
283
+ slice_images.append(source_image)
284
+ final_placeholder = image_placeholder
285
+
286
+ if len(patches) > 0:
287
+ for i in range(len(patches)):
288
+ for j in range(len(patches[0])):
289
+ slice_images.append(patches[i][j])
290
+
291
+ final_placeholder += get_grid_placeholder(
292
+ tokenizer, best_grid, self.config.query_num
293
+ )
294
+
295
+ return slice_images, final_placeholder
296
+
297
+ def reshape_by_patch(self, image_tensor):
298
+ """
299
+ :param image_tensor: shape [3, H, W]
300
+ :param patch_size:
301
+ :return: [3, patch_size, HW/patch_size]
302
+ """
303
+ patch_size = self.config.patch_size
304
+ patches = torch.nn.functional.unfold(
305
+ image_tensor,
306
+ (patch_size, patch_size),
307
+ stride=(patch_size, patch_size)
308
+ )
309
+
310
+ patches = patches.reshape(image_tensor.size(0), patch_size, patch_size, -1)
311
+ patches = patches.permute(0, 1, 3, 2).reshape(image_tensor.size(0), patch_size, -1)
312
+ return patches
313
+
314
  def generate(
315
  self,
316
+ input_id_list=None,
317
+ img_list=None,
318
+ tgt_sizes=None,
319
  tokenizer=None,
320
+ max_inp_length: Optional[int] = None,
321
  vision_hidden_states=None,
322
+ return_vision_hidden_states=False,
323
  stream=False,
324
  **kwargs
325
  ):
326
+
327
+ assert input_id_list is not None
328
+ bs = len(input_id_list)
329
+ if img_list == None:
330
  img_list = [[] for i in range(bs)]
331
  assert bs == len(img_list)
332
+
333
+ model_inputs = self._process_list(tokenizer, input_id_list, max_inp_length)
334
+
335
  if vision_hidden_states is None:
336
  pixel_values = []
337
  for i in range(bs):
 
347
  else:
348
  model_inputs["vision_hidden_states"] = vision_hidden_states
349
 
350
+ with torch.inference_mode():
351
+ (
352
+ model_inputs["inputs_embeds"],
353
+ vision_hidden_states,
354
+ ) = self.get_vllm_embedding(model_inputs)
355
 
356
+ if stream:
357
+ result = self._decode_stream(model_inputs["inputs_embeds"], tokenizer, **kwargs)
358
+ else:
359
+ result = self._decode(model_inputs["inputs_embeds"], tokenizer, **kwargs)
360
+
361
+ if return_vision_hidden_states:
362
+ return result, vision_hidden_states
363
 
364
  return result
365
 
 
368
  image,
369
  msgs,
370
  tokenizer,
 
371
  vision_hidden_states=None,
372
  max_new_tokens=1024,
373
  sampling=True,
 
376
  stream=False,
377
  **kwargs
378
  ):
 
 
379
  if isinstance(msgs, str):
380
  msgs = json.loads(msgs)
 
381
 
382
+ copy_msgs = deepcopy(msgs)
383
+ assert len(copy_msgs) > 0, 'msgs is empty'
384
+ assert sampling or not stream, 'if use stream mode, make sure sampling=True'
385
 
386
+ if image is not None and isinstance(copy_msgs[0]['content'], str):
387
+ copy_msgs[0]['content'] = [image, copy_msgs[0]['content']]
 
388
 
389
  images = []
390
+ tgt_sizes = []
391
  for i, msg in enumerate(copy_msgs):
392
  role = msg["role"]
393
  content = msg["content"]
 
396
  assert role == "user", "The role of first msg should be user"
397
  if isinstance(content, str):
398
  content = [content]
399
+
400
  cur_msgs = []
401
  for c in content:
402
  if isinstance(c, Image.Image):
403
+ image = c
404
+ if self.config.slice_mode:
405
+ slice_images, image_placeholder = self.get_slice_image_placeholder(
406
+ image, tokenizer
407
+ )
408
+ cur_msgs.append(image_placeholder)
409
+ for slice_image in slice_images:
410
+ slice_image = self.transform(slice_image)
411
+ H, W = slice_image.shape[1:]
412
+ images.append(self.reshape_by_patch(slice_image))
413
+ tgt_sizes.append(torch.Tensor([H // self.config.patch_size, W // self.config.patch_size]).type(torch.int32))
414
+ else:
415
+ images.append(self.transform(image))
416
+ cur_msgs.append(
417
+ tokenizer.im_start
418
+ + tokenizer.unk_token * self.config.query_num
419
+ + tokenizer.im_end
420
+ )
421
  elif isinstance(c, str):
422
  cur_msgs.append(c)
423
+
424
+
425
+ msg['content'] = '\n'.join(cur_msgs)
426
+ if tgt_sizes:
427
+ tgt_sizes = torch.vstack(tgt_sizes)
428
 
429
  if system_prompt:
430
  sys_msg = {'role': 'system', 'content': system_prompt}
431
+ copy_msgs = [sys_msg] + copy_msgs
432
 
433
+ input_ids = tokenizer.apply_chat_template(copy_msgs, tokenize=True, add_generation_prompt=False)
 
434
 
435
  if sampling:
436
  generation_config = {
 
449
  generation_config.update(
450
  (k, kwargs[k]) for k in generation_config.keys() & kwargs.keys()
451
  )
452
+
453
  with torch.inference_mode():
454
+ res, vision_hidden_states = self.generate(
455
+ input_id_list=[input_ids],
456
+ max_inp_length=max_inp_length,
457
+ img_list=[images],
458
+ tgt_sizes=[tgt_sizes],
459
  tokenizer=tokenizer,
460
  max_new_tokens=max_new_tokens,
461
  vision_hidden_states=vision_hidden_states,
462
+ return_vision_hidden_states=True,
463
  stream=stream,
 
464
  **generation_config
465
  )
466
+
467
  if stream:
468
  def stream_gen():
469
  for text in res:
 
474
  else:
475
  answer = res[0]
476
  return answer
477
+
478
+
479
+ class PreTrainedTokenizerFastWrapper(PreTrainedTokenizerFast):
480
+ def __init__(self, **kwargs):
481
+ super().__init__(**kwargs)
482
+ self.eot_token = "<|eot_id|>"
483
+ self.im_start = "<image>"
484
+ self.im_end = "</image>"
485
+ self.ref_start = "<ref>"
486
+ self.ref_end = "</ref>"
487
+ self.box_start = "<box>"
488
+ self.box_end = "</box>"
489
+ self.quad_start = "<quad>"
490
+ self.quad_end = "</quad>"
491
+ self.slice_start = "<slice>"
492
+ self.slice_end = "</slice>"
493
+
494
+ @property
495
+ def eos_id(self):
496
+ return self.eos_token_id
497
+
498
+ @property
499
+ def bos_id(self):
500
+ return self.bos_token_id
501
+
502
+ @property
503
+ def unk_id(self):
504
+ return self.unk_token_id
505
+
506
+ @property
507
+ def eot_id(self):
508
+ return self.convert_tokens_to_ids(self.eot_token)
509
+
510
+ @property
511
+ def im_start_id(self):
512
+ return self.convert_tokens_to_ids(self.im_start)
513
+
514
+ @property
515
+ def im_end_id(self):
516
+ return self.convert_tokens_to_ids(self.im_end)
517
+
518
+ @staticmethod
519
+ def escape(text: str) -> str:
520
+ return text
521
+
522
+ @staticmethod
523
+ def unescape(text: str) -> str:
524
+ return text
525
+
526
+
527
+ def pad(orig_items, key, max_length=None, padding_value=0, padding_side="left"):
528
+ items = []
529
+ if isinstance(orig_items[0][key], list):
530
+ assert isinstance(orig_items[0][key][0], torch.Tensor)
531
+ for it in orig_items:
532
+ for tr in it[key]:
533
+ items.append({key: tr})
534
+ else:
535
+ assert isinstance(orig_items[0][key], torch.Tensor)
536
+ items = orig_items
537
+
538
+ batch_size = len(items)
539
+ shape = items[0][key].shape
540
+ dim = len(shape)
541
+ assert dim <= 3
542
+ if max_length is None:
543
+ max_length = 0
544
+ max_length = max(max_length, max(item[key].shape[-1] for item in items))
545
+ min_length = min(item[key].shape[-1] for item in items)
546
+ dtype = items[0][key].dtype
547
+
548
+ if dim == 1:
549
+ return torch.cat([item[key] for item in items], dim=0)
550
+ elif dim == 2:
551
+ if max_length == min_length:
552
+ return torch.cat([item[key] for item in items], dim=0)
553
+ tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value
554
+ else:
555
+ tensor = (
556
+ torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype)
557
+ + padding_value
558
+ )
559
+
560
+ for i, item in enumerate(items):
561
+ if dim == 2:
562
+ if padding_side == "left":
563
+ tensor[i, -len(item[key][0]) :] = item[key][0].clone()
564
+ else:
565
+ tensor[i, : len(item[key][0])] = item[key][0].clone()
566
+ elif dim == 3:
567
+ if padding_side == "left":
568
+ tensor[i, -len(item[key][0]) :, :] = item[key][0].clone()
569
+ else:
570
+ tensor[i, : len(item[key][0]), :] = item[key][0].clone()
571
+
572
+ return tensor
573
+
574
+
575
+ def slice_image(
576
+ image, max_slice_nums=9, scale_resolution=448, patch_size=14, never_split=False
577
+ ):
578
+ original_size = image.size
579
+ original_width, original_height = original_size
580
+ log_ratio = math.log(original_width / original_height)
581
+ ratio = original_width * original_height / (scale_resolution * scale_resolution)
582
+ multiple = min(math.ceil(ratio), max_slice_nums)
583
+
584
+ source_image = None
585
+ best_grid = None
586
+ patches = []
587
+
588
+ if multiple <= 1 or never_split:
589
+ # dont need to slice, upsample
590
+ best_size = find_best_resize(
591
+ original_size, scale_resolution, patch_size, allow_upscale=True
592
+ )
593
+ source_image = image.resize(best_size, Image.Resampling.BICUBIC)
594
+ else:
595
+ candidate_split_grids_nums = []
596
+ for i in [multiple - 1, multiple, multiple + 1]:
597
+ if i == 1 or i > max_slice_nums:
598
+ continue
599
+ candidate_split_grids_nums.append(i)
600
+
601
+ # source image, down-sampling and ensure divided by patch_size
602
+ best_resize = find_best_resize(original_size, scale_resolution, patch_size)
603
+ source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
604
+ candidate_grids = []
605
+
606
+ # find best grid
607
+ for split_grids_nums in candidate_split_grids_nums:
608
+ m = 1
609
+ while m <= split_grids_nums:
610
+ if split_grids_nums % m == 0:
611
+ candidate_grids.append([m, split_grids_nums // m])
612
+ m += 1
613
+
614
+ best_grid = [1, 1]
615
+ min_error = float("inf")
616
+ for grid in candidate_grids:
617
+ error = abs(log_ratio - math.log(grid[0] / grid[1]))
618
+ if error < min_error:
619
+ best_grid = grid
620
+ min_error = error
621
+
622
+ refine_size = get_refine_size(
623
+ original_size, best_grid, scale_resolution, patch_size, allow_upscale=True
624
+ )
625
+
626
+ refine_image = image.resize(refine_size, Image.Resampling.BICUBIC)
627
+ patches = split_to_patches(refine_image, best_grid)
628
+
629
+ return source_image, patches, best_grid
630
+
631
+
632
+ def ensure_divide(length, patch_size):
633
+ return max(round(length / patch_size) * patch_size, patch_size)
634
+
635
+
636
+ def find_best_resize(original_size, scale_resolution, patch_size, allow_upscale=False):
637
+ width, height = original_size
638
+ if (width * height > scale_resolution * scale_resolution) or allow_upscale:
639
+ r = width / height
640
+ height = int(scale_resolution / math.sqrt(r))
641
+ width = int(height * r)
642
+ best_width = ensure_divide(width, patch_size)
643
+ best_height = ensure_divide(height, patch_size)
644
+ return (best_width, best_height)
645
+
646
+
647
+ def get_refine_size(
648
+ original_size, grid, scale_resolution, patch_size, allow_upscale=False
649
+ ):
650
+ width, height = original_size
651
+ grid_x, grid_y = grid
652
+
653
+ refine_width = ensure_divide(width, grid_x)
654
+ refine_height = ensure_divide(height, grid_y)
655
+
656
+ grid_width = refine_width / grid_x
657
+ grid_height = refine_height / grid_y
658
+
659
+ best_grid_size = find_best_resize(
660
+ (grid_width, grid_height),
661
+ scale_resolution,
662
+ patch_size,
663
+ allow_upscale=allow_upscale,
664
+ )
665
+
666
+ refine_size = (best_grid_size[0] * grid_x, best_grid_size[1] * grid_y)
667
+
668
+ return refine_size
669
+
670
+
671
+ def split_to_patches(image, grid):
672
+ patches = []
673
+ width, height = image.size
674
+ grid_x = int(width / grid[0])
675
+ grid_y = int(height / grid[1])
676
+
677
+ for i in range(0, height, grid_y):
678
+ images = []
679
+ for j in range(0, width, grid_x):
680
+ box = (j, i, j + grid_x, i + grid_y)
681
+ patch = image.crop(box)
682
+ images.append(patch)
683
+ patches.append(images)
684
+
685
+ return patches
686
+
687
+
688
+ def get_grid_placeholder(tokenizer, grid, query_num):
689
+ image_placeholder = (
690
+ tokenizer.im_start + tokenizer.unk_token * query_num + tokenizer.im_end
691
+ )
692
+
693
+ cols = grid[0]
694
+ rows = grid[1]
695
+ slices = []
696
+ for i in range(rows):
697
+ lines = []
698
+ for j in range(cols):
699
+ lines.append(image_placeholder)
700
+ slices.append("".join(lines))
701
+ slice_placeholder = tokenizer.slice_start + "\n".join(slices) + tokenizer.slice_end
702
+ return slice_placeholder
preprocessor_config.json DELETED
@@ -1,20 +0,0 @@
1
- {
2
- "image_processor_type": "MiniCPMVImageProcessor",
3
- "auto_map": {
4
- "AutoProcessor": "processing_minicpmv.MiniCPMVProcessor",
5
- "AutoImageProcessor": "image_processing_minicpmv.MiniCPMVImageProcessor"
6
- },
7
- "processor_class": "MiniCPMVProcessor",
8
- "max_slice_nums": 9,
9
- "scale_resolution": 448,
10
- "patch_size": 14,
11
- "image_feature_size": 96,
12
- "im_start": "<image>",
13
- "im_end": "</image>",
14
- "slice_start": "<slice>",
15
- "slice_end": "</slice>",
16
- "unk": "<unk>",
17
- "norm_mean": [0.5, 0.5, 0.5],
18
- "norm_std": [0.5, 0.5, 0.5],
19
- "version": 2.5
20
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
processing_minicpmv.py DELETED
@@ -1,244 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2024 The HuggingFace Inc. team.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """
16
- Processor class for MiniCPMV.
17
- """
18
-
19
- from typing import List, Optional, Union, Dict, Any
20
- import torch
21
- import re
22
-
23
- from transformers.image_processing_utils import BatchFeature
24
- from transformers.image_utils import ImageInput
25
- from transformers.processing_utils import ProcessorMixin
26
- from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
27
- from transformers.utils import TensorType, requires_backends, is_torch_dtype, is_torch_device
28
-
29
- from .image_processing_minicpmv import MiniCPMVBatchFeature
30
-
31
-
32
- class MiniCPMVProcessor(ProcessorMixin):
33
- r"""
34
- Constructs a MiniCPMV processor which wraps a MiniCPMV image processor and a MiniCPMV tokenizer into a single processor.
35
-
36
- [`MiniCPMVProcessor`] offers all the functionalities of [`MiniCPMVImageProcessor`] and [`LlamaTokenizerWrapper`]. See the
37
- [`~MiniCPMVProcessor.__call__`] and [`~MiniCPMVProcessor.decode`] for more information.
38
-
39
- Args:
40
- image_processor ([`MiniCPMVImageProcessor`], *optional*):
41
- The image processor is a required input.
42
- tokenizer ([`LlamaTokenizerWrapper`], *optional*):
43
- The tokenizer is a required input.
44
- """
45
- attributes = ["image_processor", "tokenizer"]
46
- image_processor_class = "AutoImageProcessor"
47
- tokenizer_class = "AutoTokenizer"
48
-
49
- def __init__(self, image_processor=None, tokenizer=None):
50
- super().__init__(image_processor, tokenizer)
51
- self.version = image_processor.version
52
-
53
- def __call__(
54
- self,
55
- text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
56
- images: ImageInput = None,
57
- padding: Union[bool, str, PaddingStrategy] = False,
58
- truncation: Union[bool, str, TruncationStrategy] = None,
59
- max_length: Optional[int] = None,
60
- do_pad: Optional[bool] = True,
61
- return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
62
- ) -> MiniCPMVBatchFeature:
63
- """
64
- Only support for single input for now. Batched input is coming soon.
65
-
66
- Args:
67
- text (`str`):
68
- The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
69
- (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
70
- `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
71
- images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
72
- The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
73
- tensor. Both channels-first and channels-last formats are supported.
74
- padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
75
- Select a strategy to pad the returned sequences (according to the model's padding side and padding
76
- index) among:
77
- - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
78
- sequence if provided).
79
- - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
80
- acceptable input length for the model if that argument is not provided.
81
- - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
82
- lengths).
83
- max_length (`int`, *optional*):
84
- Maximum length of the returned list and optionally padding length (see above).
85
- do_pad (`bool`, *optional*, defaults to self.do_pad):
86
- Whether to pad the image. If `True` will pad the images in the batch to the largest image in the batch
87
- and create a pixel mask. Padding will be applied to the bottom and right of the image with zeros.
88
- truncation (`bool`, *optional*):
89
- Activates truncation to cut input sequences longer than `max_length` to `max_length`.
90
- return_tensors (`str` or [`~utils.TensorType`], *optional*):
91
- If set, will return tensors of a particular framework. Acceptable values are:
92
-
93
- - `'tf'`: Return TensorFlow `tf.constant` objects.
94
- - `'pt'`: Return PyTorch `torch.Tensor` objects.
95
- - `'np'`: Return NumPy `np.ndarray` objects.
96
- - `'jax'`: Return JAX `jnp.ndarray` objects.
97
-
98
- Returns:
99
- [`BatchFeature`]: A [`BatchFeature`] with the following fields:
100
-
101
- - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
102
- - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
103
- `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
104
- `None`).
105
- - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
106
- """
107
- if images is not None:
108
- image_inputs = self.image_processor(images, do_pad=do_pad, return_tensors=return_tensors)
109
- return self._convert_images_texts_to_inputs(image_inputs, text, max_length=max_length)
110
-
111
- # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
112
- def batch_decode(self, *args, **kwargs):
113
- """
114
- This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
115
- refer to the docstring of this method for more information.
116
- """
117
- output_ids = args[0]
118
- result_text = []
119
- for result in output_ids:
120
- result = result[result != 0]
121
- if result[0] == self.tokenizer.bos_id:
122
- result = result[1:]
123
- if result[-1] == self.tokenizer.eos_id:
124
- result = result[:-1]
125
- result_text.append(self.tokenizer.decode(result, *args[1:], **kwargs).strip())
126
- return result_text
127
- # return self.tokenizer.batch_decode(*args, **kwargs)
128
-
129
- # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
130
- def decode(self, *args, **kwargs):
131
- """
132
- This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
133
- the docstring of this method for more information.
134
- """
135
- result = args[0]
136
- result = result[result != 0]
137
- if result[0] == self.tokenizer.bos_id:
138
- result = result[1:]
139
- if result[-1] == self.tokenizer.eos_id or (hasattr(self.tokenizer, "eot_id") and result[-1] == self.tokenizer.eot_id):
140
- result = result[:-1]
141
- return self.tokenizer.decode(result, *args[1:], **kwargs).strip()
142
-
143
- def _convert(
144
- self, input_str, max_inp_length: Optional[int] = None
145
- ):
146
- if self.version == 2.5 or self.tokenizer.add_bos_token:
147
- input_ids = self.tokenizer.encode(input_str)
148
- else:
149
- input_ids = [self.tokenizer.bos_id] + self.tokenizer.encode(input_str)
150
- if max_inp_length is not None:
151
- input_ids = input_ids[:max_inp_length]
152
- input_ids = torch.tensor(input_ids, dtype=torch.int32)
153
-
154
- image_start_tokens = torch.where(input_ids == self.tokenizer.im_start_id)[0]
155
- image_start_tokens += 1
156
- image_end_tokens = torch.where(input_ids == self.tokenizer.im_end_id)[0]
157
- valid_image_nums = max(len(image_start_tokens), len(image_end_tokens))
158
- image_bounds = torch.hstack(
159
- [
160
- image_start_tokens[:valid_image_nums].unsqueeze(-1),
161
- image_end_tokens[:valid_image_nums].unsqueeze(-1),
162
- ]
163
- )
164
- return input_ids.unsqueeze(0), image_bounds
165
-
166
- def _convert_images_texts_to_inputs(self, images, texts, do_pad=False, truncation=None, max_length=None, return_tensors=None):
167
- if not len(images):
168
- model_inputs = self.tokenizer(texts, return_tensors=return_tensors, padding=do_pad, truncation=truncation, max_length=max_length)
169
- return MiniCPMVBatchFeature(data={**model_inputs})
170
-
171
- pattern = "(<image>./</image>)"
172
- images, image_sizes, tgt_sizes = images["pixel_values"], images["image_sizes"], images["tgt_sizes"]
173
-
174
- image_tags = re.findall(pattern, texts)
175
- assert len(image_tags) == len(image_sizes[0])
176
- text_chunks = texts.split(pattern)
177
- final_texts = ""
178
- for i in range(len(image_tags)):
179
- final_texts = final_texts + text_chunks[i] + self.image_processor.get_slice_image_placeholder(image_sizes[0][i])
180
- final_texts += text_chunks[-1]
181
- input_ids, image_bounds = self._convert(final_texts, max_length)
182
- return MiniCPMVBatchFeature(data={
183
- "input_ids": input_ids,
184
- "pixel_values": images,
185
- "image_sizes": image_sizes,
186
- "image_bound": [image_bounds],
187
- "tgt_sizes": tgt_sizes
188
- })
189
-
190
- @property
191
- # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
192
- def model_input_names(self):
193
- tokenizer_input_names = self.tokenizer.model_input_names
194
- image_processor_input_names = self.image_processor.model_input_names
195
- return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
196
-
197
-
198
- def pad(self, orig_items, key, max_length=None, padding_value=0, padding_side="left"):
199
- items = []
200
- if isinstance(orig_items[0][key], list):
201
- assert isinstance(orig_items[0][key][0], torch.Tensor)
202
- for it in orig_items:
203
- for tr in it[key]:
204
- items.append({key: tr})
205
- else:
206
- assert isinstance(orig_items[0][key], torch.Tensor)
207
- items = orig_items
208
-
209
- batch_size = len(items)
210
- shape = items[0][key].shape
211
- dim = len(shape)
212
- assert dim <= 3
213
- if max_length is None:
214
- max_length = 0
215
- max_length = max(max_length, max(item[key].shape[-1] for item in items))
216
- min_length = min(item[key].shape[-1] for item in items)
217
- dtype = items[0][key].dtype
218
-
219
- if dim == 1:
220
- return torch.cat([item[key] for item in items], dim=0)
221
- elif dim == 2:
222
- if max_length == min_length:
223
- return torch.cat([item[key] for item in items], dim=0)
224
- tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value
225
- else:
226
- tensor = (
227
- torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype)
228
- + padding_value
229
- )
230
-
231
- for i, item in enumerate(items):
232
- if dim == 2:
233
- if padding_side == "left":
234
- tensor[i, -len(item[key][0]) :] = item[key][0].clone()
235
- else:
236
- tensor[i, : len(item[key][0])] = item[key][0].clone()
237
- elif dim == 3:
238
- if padding_side == "left":
239
- tensor[i, -len(item[key][0]) :, :] = item[key][0].clone()
240
- else:
241
- tensor[i, : len(item[key][0]), :] = item[key][0].clone()
242
-
243
- return tensor
244
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
resampler.py CHANGED
@@ -1,17 +1,9 @@
1
  from functools import partial
2
  import numpy as np
3
- import warnings
4
- from typing import Optional, Tuple
5
  import torch
6
  from torch import nn
7
- from torch import Tensor
8
- import torch.nn.functional as F
9
- from torch.nn.functional import *
10
- from torch.nn.modules.activation import *
11
  from torch.nn.init import trunc_normal_
12
- from torch.nn.init import constant_, xavier_normal_, xavier_uniform_
13
- from transformers import PreTrainedModel
14
- from transformers.integrations import is_deepspeed_zero3_enabled
15
 
16
  def get_2d_sincos_pos_embed(embed_dim, image_size):
17
  """
@@ -63,7 +55,7 @@ def get_1d_sincos_pos_embed_from_grid_new(embed_dim, pos):
63
  emb = np.concatenate([emb_sin, emb_cos], axis=-1) # (H, W, D)
64
  return emb
65
 
66
-
67
  class Resampler(nn.Module):
68
  """
69
  A 2D perceiver-resampler network with one cross attention layers by
@@ -90,13 +82,14 @@ class Resampler(nn.Module):
90
  self.max_size = max_size
91
 
92
  self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim))
 
93
 
94
  if kv_dim is not None and kv_dim != embed_dim:
95
  self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False)
96
  else:
97
  self.kv_proj = nn.Identity()
98
 
99
- self.attn = MultiheadAttention(embed_dim, num_heads)
100
  self.ln_q = norm_layer(embed_dim)
101
  self.ln_kv = norm_layer(embed_dim)
102
 
@@ -104,10 +97,9 @@ class Resampler(nn.Module):
104
  self.proj = nn.Parameter((embed_dim ** -0.5) * torch.randn(embed_dim, embed_dim))
105
 
106
  self._set_2d_pos_cache(self.max_size)
 
107
 
108
  def _set_2d_pos_cache(self, max_size, device='cpu'):
109
- if is_deepspeed_zero3_enabled():
110
- device='cuda'
111
  pos_embed = torch.from_numpy(get_2d_sincos_pos_embed(self.embed_dim, max_size)).float().to(device)
112
  self.register_buffer("pos_embed", pos_embed, persistent=False)
113
 
@@ -168,645 +160,4 @@ class Resampler(nn.Module):
168
  return x
169
 
170
  def _repeat(self, query, N: int):
171
- return query.unsqueeze(1).repeat(1, N, 1)
172
-
173
-
174
- class MultiheadAttention(nn.MultiheadAttention):
175
- def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False,
176
- add_zero_attn=False, kdim=None, vdim=None, batch_first=False, device=None, dtype=None):
177
- super().__init__(embed_dim, num_heads, dropout, bias, add_bias_kv, add_zero_attn, kdim, vdim, batch_first, device, dtype)
178
-
179
- # rewrite out_proj layer,with nn.Linear
180
- self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype)
181
-
182
- def forward(
183
- self,
184
- query: Tensor,
185
- key: Tensor,
186
- value: Tensor,
187
- key_padding_mask: Optional[Tensor] = None,
188
- need_weights: bool = True,
189
- attn_mask: Optional[Tensor] = None,
190
- average_attn_weights: bool = True,
191
- is_causal : bool = False) -> Tuple[Tensor, Optional[Tensor]]:
192
- why_not_fast_path = ''
193
- if ((attn_mask is not None and torch.is_floating_point(attn_mask))
194
- or (key_padding_mask is not None) and torch.is_floating_point(key_padding_mask)):
195
- why_not_fast_path = "floating-point masks are not supported for fast path."
196
-
197
- is_batched = query.dim() == 3
198
-
199
- key_padding_mask = F._canonical_mask(
200
- mask=key_padding_mask,
201
- mask_name="key_padding_mask",
202
- other_type=F._none_or_dtype(attn_mask),
203
- other_name="attn_mask",
204
- target_type=query.dtype
205
- )
206
-
207
- attn_mask = F._canonical_mask(
208
- mask=attn_mask,
209
- mask_name="attn_mask",
210
- other_type=None,
211
- other_name="",
212
- target_type=query.dtype,
213
- check_other=False,
214
- )
215
-
216
-
217
- if not is_batched:
218
- why_not_fast_path = f"input not batched; expected query.dim() of 3 but got {query.dim()}"
219
- elif query is not key or key is not value:
220
- # When lifting this restriction, don't forget to either
221
- # enforce that the dtypes all match or test cases where
222
- # they don't!
223
- why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)"
224
- elif self.in_proj_bias is not None and query.dtype != self.in_proj_bias.dtype:
225
- why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match"
226
- elif self.in_proj_weight is None:
227
- why_not_fast_path = "in_proj_weight was None"
228
- elif query.dtype != self.in_proj_weight.dtype:
229
- # this case will fail anyway, but at least they'll get a useful error message.
230
- why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match"
231
- elif self.training:
232
- why_not_fast_path = "training is enabled"
233
- elif (self.num_heads % 2) != 0:
234
- why_not_fast_path = "self.num_heads is not even"
235
- elif not self.batch_first:
236
- why_not_fast_path = "batch_first was not True"
237
- elif self.bias_k is not None:
238
- why_not_fast_path = "self.bias_k was not None"
239
- elif self.bias_v is not None:
240
- why_not_fast_path = "self.bias_v was not None"
241
- elif self.add_zero_attn:
242
- why_not_fast_path = "add_zero_attn was enabled"
243
- elif not self._qkv_same_embed_dim:
244
- why_not_fast_path = "_qkv_same_embed_dim was not True"
245
- elif query.is_nested and (key_padding_mask is not None or attn_mask is not None):
246
- why_not_fast_path = "supplying both src_key_padding_mask and src_mask at the same time \
247
- is not supported with NestedTensor input"
248
- elif torch.is_autocast_enabled():
249
- why_not_fast_path = "autocast is enabled"
250
-
251
- if not why_not_fast_path:
252
- tensor_args = (
253
- query,
254
- key,
255
- value,
256
- self.in_proj_weight,
257
- self.in_proj_bias,
258
- self.out_proj.weight,
259
- self.out_proj.bias,
260
- )
261
- # We have to use list comprehensions below because TorchScript does not support
262
- # generator expressions.
263
- if torch.overrides.has_torch_function(tensor_args):
264
- why_not_fast_path = "some Tensor argument has_torch_function"
265
- elif _is_make_fx_tracing():
266
- why_not_fast_path = "we are running make_fx tracing"
267
- elif not all(_check_arg_device(x) for x in tensor_args):
268
- why_not_fast_path = ("some Tensor argument's device is neither one of "
269
- f"cpu, cuda or {torch.utils.backend_registration._privateuse1_backend_name}")
270
- elif torch.is_grad_enabled() and any(_arg_requires_grad(x) for x in tensor_args):
271
- why_not_fast_path = ("grad is enabled and at least one of query or the "
272
- "input/output projection weights or biases requires_grad")
273
- if not why_not_fast_path:
274
- merged_mask, mask_type = self.merge_masks(attn_mask, key_padding_mask, query)
275
-
276
- if self.in_proj_bias is not None and self.in_proj_weight is not None:
277
- return torch._native_multi_head_attention(
278
- query,
279
- key,
280
- value,
281
- self.embed_dim,
282
- self.num_heads,
283
- self.in_proj_weight,
284
- self.in_proj_bias,
285
- self.out_proj.weight,
286
- self.out_proj.bias,
287
- merged_mask,
288
- need_weights,
289
- average_attn_weights,
290
- mask_type)
291
-
292
- any_nested = query.is_nested or key.is_nested or value.is_nested
293
- assert not any_nested, ("MultiheadAttention does not support NestedTensor outside of its fast path. " +
294
- f"The fast path was not hit because {why_not_fast_path}")
295
-
296
- if self.batch_first and is_batched:
297
- # make sure that the transpose op does not affect the "is" property
298
- if key is value:
299
- if query is key:
300
- query = key = value = query.transpose(1, 0)
301
- else:
302
- query, key = (x.transpose(1, 0) for x in (query, key))
303
- value = key
304
- else:
305
- query, key, value = (x.transpose(1, 0) for x in (query, key, value))
306
-
307
- if not self._qkv_same_embed_dim:
308
- attn_output, attn_output_weights = self.multi_head_attention_forward(
309
- query, key, value, self.embed_dim, self.num_heads,
310
- self.in_proj_weight, self.in_proj_bias,
311
- self.bias_k, self.bias_v, self.add_zero_attn,
312
- self.dropout, self.out_proj.weight, self.out_proj.bias,
313
- training=self.training,
314
- key_padding_mask=key_padding_mask, need_weights=need_weights,
315
- attn_mask=attn_mask,
316
- use_separate_proj_weight=True,
317
- q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
318
- v_proj_weight=self.v_proj_weight,
319
- average_attn_weights=average_attn_weights,
320
- is_causal=is_causal)
321
- else:
322
- attn_output, attn_output_weights = self.multi_head_attention_forward(
323
- query, key, value, self.embed_dim, self.num_heads,
324
- self.in_proj_weight, self.in_proj_bias,
325
- self.bias_k, self.bias_v, self.add_zero_attn,
326
- self.dropout, self.out_proj.weight, self.out_proj.bias,
327
- training=self.training,
328
- key_padding_mask=key_padding_mask,
329
- need_weights=need_weights,
330
- attn_mask=attn_mask,
331
- average_attn_weights=average_attn_weights,
332
- is_causal=is_causal)
333
- if self.batch_first and is_batched:
334
- return attn_output.transpose(1, 0), attn_output_weights
335
- else:
336
- return attn_output, attn_output_weights
337
-
338
- def multi_head_attention_forward(
339
- self,
340
- query: Tensor,
341
- key: Tensor,
342
- value: Tensor,
343
- embed_dim_to_check: int,
344
- num_heads: int,
345
- in_proj_weight: Optional[Tensor],
346
- in_proj_bias: Optional[Tensor],
347
- bias_k: Optional[Tensor],
348
- bias_v: Optional[Tensor],
349
- add_zero_attn: bool,
350
- dropout_p: float,
351
- out_proj_weight: Tensor,
352
- out_proj_bias: Optional[Tensor],
353
- training: bool = True,
354
- key_padding_mask: Optional[Tensor] = None,
355
- need_weights: bool = True,
356
- attn_mask: Optional[Tensor] = None,
357
- use_separate_proj_weight: bool = False,
358
- q_proj_weight: Optional[Tensor] = None,
359
- k_proj_weight: Optional[Tensor] = None,
360
- v_proj_weight: Optional[Tensor] = None,
361
- static_k: Optional[Tensor] = None,
362
- static_v: Optional[Tensor] = None,
363
- average_attn_weights: bool = True,
364
- is_causal: bool = False,
365
- ) -> Tuple[Tensor, Optional[Tensor]]:
366
- tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias)
367
- if has_torch_function(tens_ops):
368
- return handle_torch_function(
369
- multi_head_attention_forward,
370
- tens_ops,
371
- query,
372
- key,
373
- value,
374
- embed_dim_to_check,
375
- num_heads,
376
- in_proj_weight,
377
- in_proj_bias,
378
- bias_k,
379
- bias_v,
380
- add_zero_attn,
381
- dropout_p,
382
- out_proj_weight,
383
- out_proj_bias,
384
- training=training,
385
- key_padding_mask=key_padding_mask,
386
- need_weights=need_weights,
387
- attn_mask=attn_mask,
388
- is_causal=is_causal,
389
- use_separate_proj_weight=use_separate_proj_weight,
390
- q_proj_weight=q_proj_weight,
391
- k_proj_weight=k_proj_weight,
392
- v_proj_weight=v_proj_weight,
393
- static_k=static_k,
394
- static_v=static_v,
395
- average_attn_weights=average_attn_weights,
396
- )
397
-
398
- is_batched = _mha_shape_check(query, key, value, key_padding_mask, attn_mask, num_heads)
399
-
400
- # For unbatched input, we unsqueeze at the expected batch-dim to pretend that the input
401
- # is batched, run the computation and before returning squeeze the
402
- # batch dimension so that the output doesn't carry this temporary batch dimension.
403
- if not is_batched:
404
- # unsqueeze if the input is unbatched
405
- query = query.unsqueeze(1)
406
- key = key.unsqueeze(1)
407
- value = value.unsqueeze(1)
408
- if key_padding_mask is not None:
409
- key_padding_mask = key_padding_mask.unsqueeze(0)
410
-
411
- # set up shape vars
412
- tgt_len, bsz, embed_dim = query.shape
413
- src_len, _, _ = key.shape
414
-
415
- key_padding_mask = _canonical_mask(
416
- mask=key_padding_mask,
417
- mask_name="key_padding_mask",
418
- other_type=_none_or_dtype(attn_mask),
419
- other_name="attn_mask",
420
- target_type=query.dtype
421
- )
422
-
423
- if is_causal and attn_mask is None:
424
- raise RuntimeError(
425
- "Need attn_mask if specifying the is_causal hint. "
426
- "You may use the Transformer module method "
427
- "`generate_square_subsequent_mask` to create this mask."
428
- )
429
-
430
- if is_causal and key_padding_mask is None and not need_weights:
431
- # when we have a kpm or need weights, we need attn_mask
432
- # Otherwise, we use the is_causal hint go as is_causal
433
- # indicator to SDPA.
434
- attn_mask = None
435
- else:
436
- attn_mask = _canonical_mask(
437
- mask=attn_mask,
438
- mask_name="attn_mask",
439
- other_type=None,
440
- other_name="",
441
- target_type=query.dtype,
442
- check_other=False,
443
- )
444
-
445
- if key_padding_mask is not None:
446
- # We have the attn_mask, and use that to merge kpm into it.
447
- # Turn off use of is_causal hint, as the merged mask is no
448
- # longer causal.
449
- is_causal = False
450
-
451
- assert embed_dim == embed_dim_to_check, \
452
- f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}"
453
- if isinstance(embed_dim, torch.Tensor):
454
- # embed_dim can be a tensor when JIT tracing
455
- head_dim = embed_dim.div(num_heads, rounding_mode='trunc')
456
- else:
457
- head_dim = embed_dim // num_heads
458
- assert head_dim * num_heads == embed_dim, f"embed_dim {embed_dim} not divisible by num_heads {num_heads}"
459
- if use_separate_proj_weight:
460
- # allow MHA to have different embedding dimensions when separate projection weights are used
461
- assert key.shape[:2] == value.shape[:2], \
462
- f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}"
463
- else:
464
- assert key.shape == value.shape, f"key shape {key.shape} does not match value shape {value.shape}"
465
-
466
- #
467
- # compute in-projection
468
- #
469
- if not use_separate_proj_weight:
470
- assert in_proj_weight is not None, "use_separate_proj_weight is False but in_proj_weight is None"
471
- q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
472
- else:
473
- assert q_proj_weight is not None, "use_separate_proj_weight is True but q_proj_weight is None"
474
- assert k_proj_weight is not None, "use_separate_proj_weight is True but k_proj_weight is None"
475
- assert v_proj_weight is not None, "use_separate_proj_weight is True but v_proj_weight is None"
476
- if in_proj_bias is None:
477
- b_q = b_k = b_v = None
478
- else:
479
- b_q, b_k, b_v = in_proj_bias.chunk(3)
480
- q, k, v = _in_projection(query, key, value, q_proj_weight, k_proj_weight, v_proj_weight, b_q, b_k, b_v)
481
-
482
- # prep attention mask
483
-
484
- if attn_mask is not None:
485
- # ensure attn_mask's dim is 3
486
- if attn_mask.dim() == 2:
487
- correct_2d_size = (tgt_len, src_len)
488
- if attn_mask.shape != correct_2d_size:
489
- raise RuntimeError(f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}.")
490
- attn_mask = attn_mask.unsqueeze(0)
491
- elif attn_mask.dim() == 3:
492
- correct_3d_size = (bsz * num_heads, tgt_len, src_len)
493
- if attn_mask.shape != correct_3d_size:
494
- raise RuntimeError(f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}.")
495
- else:
496
- raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported")
497
-
498
- # add bias along batch dimension (currently second)
499
- if bias_k is not None and bias_v is not None:
500
- assert static_k is None, "bias cannot be added to static key."
501
- assert static_v is None, "bias cannot be added to static value."
502
- k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
503
- v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
504
- if attn_mask is not None:
505
- attn_mask = pad(attn_mask, (0, 1))
506
- if key_padding_mask is not None:
507
- key_padding_mask = pad(key_padding_mask, (0, 1))
508
- else:
509
- assert bias_k is None
510
- assert bias_v is None
511
-
512
- #
513
- # reshape q, k, v for multihead attention and make em batch first
514
- #
515
- q = q.view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
516
- if static_k is None:
517
- k = k.view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
518
- else:
519
- # TODO finish disentangling control flow so we don't do in-projections when statics are passed
520
- assert static_k.size(0) == bsz * num_heads, \
521
- f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}"
522
- assert static_k.size(2) == head_dim, \
523
- f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}"
524
- k = static_k
525
- if static_v is None:
526
- v = v.view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
527
- else:
528
- # TODO finish disentangling control flow so we don't do in-projections when statics are passed
529
- assert static_v.size(0) == bsz * num_heads, \
530
- f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}"
531
- assert static_v.size(2) == head_dim, \
532
- f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}"
533
- v = static_v
534
-
535
- # add zero attention along batch dimension (now first)
536
- if add_zero_attn:
537
- zero_attn_shape = (bsz * num_heads, 1, head_dim)
538
- k = torch.cat([k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1)
539
- v = torch.cat([v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1)
540
- if attn_mask is not None:
541
- attn_mask = pad(attn_mask, (0, 1))
542
- if key_padding_mask is not None:
543
- key_padding_mask = pad(key_padding_mask, (0, 1))
544
-
545
- # update source sequence length after adjustments
546
- src_len = k.size(1)
547
-
548
- # merge key padding and attention masks
549
- if key_padding_mask is not None:
550
- assert key_padding_mask.shape == (bsz, src_len), \
551
- f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
552
- key_padding_mask = key_padding_mask.view(bsz, 1, 1, src_len). \
553
- expand(-1, num_heads, -1, -1).reshape(bsz * num_heads, 1, src_len)
554
- if attn_mask is None:
555
- attn_mask = key_padding_mask
556
- else:
557
- attn_mask = attn_mask + key_padding_mask
558
-
559
- # adjust dropout probability
560
- if not training:
561
- dropout_p = 0.0
562
-
563
- #
564
- # (deep breath) calculate attention and out projection
565
- #
566
-
567
- if need_weights:
568
- B, Nt, E = q.shape
569
- q_scaled = q / math.sqrt(E)
570
-
571
- assert not (is_causal and attn_mask is None), "FIXME: is_causal not implemented for need_weights"
572
-
573
- if attn_mask is not None:
574
- attn_output_weights = torch.baddbmm(attn_mask, q_scaled, k.transpose(-2, -1))
575
- else:
576
- attn_output_weights = torch.bmm(q_scaled, k.transpose(-2, -1))
577
- attn_output_weights = softmax(attn_output_weights, dim=-1)
578
- if dropout_p > 0.0:
579
- attn_output_weights = dropout(attn_output_weights, p=dropout_p)
580
-
581
- attn_output = torch.bmm(attn_output_weights, v)
582
-
583
- attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim)
584
- attn_output = self.out_proj(attn_output)
585
- attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
586
-
587
- # optionally average attention weights over heads
588
- attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
589
- if average_attn_weights:
590
- attn_output_weights = attn_output_weights.mean(dim=1)
591
-
592
- if not is_batched:
593
- # squeeze the output if input was unbatched
594
- attn_output = attn_output.squeeze(1)
595
- attn_output_weights = attn_output_weights.squeeze(0)
596
- return attn_output, attn_output_weights
597
- else:
598
- # attn_mask can be either (L,S) or (N*num_heads, L, S)
599
- # if attn_mask's shape is (1, L, S) we need to unsqueeze to (1, 1, L, S)
600
- # in order to match the input for SDPA of (N, num_heads, L, S)
601
- if attn_mask is not None:
602
- if attn_mask.size(0) == 1 and attn_mask.dim() == 3:
603
- attn_mask = attn_mask.unsqueeze(0)
604
- else:
605
- attn_mask = attn_mask.view(bsz, num_heads, -1, src_len)
606
-
607
- q = q.view(bsz, num_heads, tgt_len, head_dim)
608
- k = k.view(bsz, num_heads, src_len, head_dim)
609
- v = v.view(bsz, num_heads, src_len, head_dim)
610
-
611
- attn_output = F.scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal)
612
- attn_output = attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim)
613
-
614
- attn_output = self.out_proj(attn_output)
615
- attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
616
- if not is_batched:
617
- # squeeze the output if input was unbatched
618
- attn_output = attn_output.squeeze(1)
619
- return attn_output, None
620
-
621
-
622
- def _mha_shape_check(query: Tensor, key: Tensor, value: Tensor,
623
- key_padding_mask: Optional[Tensor], attn_mask: Optional[Tensor], num_heads: int):
624
- # Verifies the expected shape for `query, `key`, `value`, `key_padding_mask` and `attn_mask`
625
- # and returns if the input is batched or not.
626
- # Raises an error if `query` is not 2-D (unbatched) or 3-D (batched) tensor.
627
-
628
- # Shape check.
629
- if query.dim() == 3:
630
- # Batched Inputs
631
- is_batched = True
632
- assert key.dim() == 3 and value.dim() == 3, \
633
- ("For batched (3-D) `query`, expected `key` and `value` to be 3-D"
634
- f" but found {key.dim()}-D and {value.dim()}-D tensors respectively")
635
- if key_padding_mask is not None:
636
- assert key_padding_mask.dim() == 2, \
637
- ("For batched (3-D) `query`, expected `key_padding_mask` to be `None` or 2-D"
638
- f" but found {key_padding_mask.dim()}-D tensor instead")
639
- if attn_mask is not None:
640
- assert attn_mask.dim() in (2, 3), \
641
- ("For batched (3-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
642
- f" but found {attn_mask.dim()}-D tensor instead")
643
- elif query.dim() == 2:
644
- # Unbatched Inputs
645
- is_batched = False
646
- assert key.dim() == 2 and value.dim() == 2, \
647
- ("For unbatched (2-D) `query`, expected `key` and `value` to be 2-D"
648
- f" but found {key.dim()}-D and {value.dim()}-D tensors respectively")
649
-
650
- if key_padding_mask is not None:
651
- assert key_padding_mask.dim() == 1, \
652
- ("For unbatched (2-D) `query`, expected `key_padding_mask` to be `None` or 1-D"
653
- f" but found {key_padding_mask.dim()}-D tensor instead")
654
-
655
- if attn_mask is not None:
656
- assert attn_mask.dim() in (2, 3), \
657
- ("For unbatched (2-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
658
- f" but found {attn_mask.dim()}-D tensor instead")
659
- if attn_mask.dim() == 3:
660
- expected_shape = (num_heads, query.shape[0], key.shape[0])
661
- assert attn_mask.shape == expected_shape, \
662
- (f"Expected `attn_mask` shape to be {expected_shape} but got {attn_mask.shape}")
663
- else:
664
- raise AssertionError(
665
- f"query should be unbatched 2D or batched 3D tensor but received {query.dim()}-D query tensor")
666
-
667
- return is_batched
668
-
669
-
670
- def _canonical_mask(
671
- mask: Optional[Tensor],
672
- mask_name: str,
673
- other_type: Optional[DType],
674
- other_name: str,
675
- target_type: DType,
676
- check_other: bool = True,
677
- ) -> Optional[Tensor]:
678
-
679
- if mask is not None:
680
- _mask_dtype = mask.dtype
681
- _mask_is_float = torch.is_floating_point(mask)
682
- if _mask_dtype != torch.bool and not _mask_is_float:
683
- raise AssertionError(
684
- f"only bool and floating types of {mask_name} are supported")
685
- if check_other and other_type is not None:
686
- if _mask_dtype != other_type:
687
- warnings.warn(
688
- f"Support for mismatched {mask_name} and {other_name} "
689
- "is deprecated. Use same type for both instead."
690
- )
691
- if not _mask_is_float:
692
- mask = (
693
- torch.zeros_like(mask, dtype=target_type)
694
- .masked_fill_(mask, float("-inf"))
695
- )
696
- return mask
697
-
698
-
699
- def _none_or_dtype(input: Optional[Tensor]) -> Optional[DType]:
700
- if input is None:
701
- return None
702
- elif isinstance(input, torch.Tensor):
703
- return input.dtype
704
- raise RuntimeError("input to _none_or_dtype() must be None or torch.Tensor")
705
-
706
- def _in_projection_packed(
707
- q: Tensor,
708
- k: Tensor,
709
- v: Tensor,
710
- w: Tensor,
711
- b: Optional[Tensor] = None,
712
- ) -> List[Tensor]:
713
- r"""
714
- Performs the in-projection step of the attention operation, using packed weights.
715
- Output is a triple containing projection tensors for query, key and value.
716
- Args:
717
- q, k, v: query, key and value tensors to be projected. For self-attention,
718
- these are typically the same tensor; for encoder-decoder attention,
719
- k and v are typically the same tensor. (We take advantage of these
720
- identities for performance if they are present.) Regardless, q, k and v
721
- must share a common embedding dimension; otherwise their shapes may vary.
722
- w: projection weights for q, k and v, packed into a single tensor. Weights
723
- are packed along dimension 0, in q, k, v order.
724
- b: optional projection biases for q, k and v, packed into a single tensor
725
- in q, k, v order.
726
- Shape:
727
- Inputs:
728
- - q: :math:`(..., E)` where E is the embedding dimension
729
- - k: :math:`(..., E)` where E is the embedding dimension
730
- - v: :math:`(..., E)` where E is the embedding dimension
731
- - w: :math:`(E * 3, E)` where E is the embedding dimension
732
- - b: :math:`E * 3` where E is the embedding dimension
733
- Output:
734
- - in output list :math:`[q', k', v']`, each output tensor will have the
735
- same shape as the corresponding input tensor.
736
- """
737
- E = q.size(-1)
738
- if k is v:
739
- if q is k:
740
- # self-attention
741
- proj = linear(q, w, b)
742
- # reshape to 3, E and not E, 3 is deliberate for better memory coalescing and keeping same order as chunk()
743
- proj = proj.unflatten(-1, (3, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
744
- return proj[0], proj[1], proj[2]
745
- else:
746
- # encoder-decoder attention
747
- w_q, w_kv = w.split([E, E * 2])
748
- if b is None:
749
- b_q = b_kv = None
750
- else:
751
- b_q, b_kv = b.split([E, E * 2])
752
- q_proj = linear(q, w_q, b_q)
753
- kv_proj = linear(k, w_kv, b_kv)
754
- # reshape to 2, E and not E, 2 is deliberate for better memory coalescing and keeping same order as chunk()
755
- kv_proj = kv_proj.unflatten(-1, (2, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
756
- return (q_proj, kv_proj[0], kv_proj[1])
757
- else:
758
- w_q, w_k, w_v = w.chunk(3)
759
- if b is None:
760
- b_q = b_k = b_v = None
761
- else:
762
- b_q, b_k, b_v = b.chunk(3)
763
- return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
764
-
765
-
766
- def _in_projection(
767
- q: Tensor,
768
- k: Tensor,
769
- v: Tensor,
770
- w_q: Tensor,
771
- w_k: Tensor,
772
- w_v: Tensor,
773
- b_q: Optional[Tensor] = None,
774
- b_k: Optional[Tensor] = None,
775
- b_v: Optional[Tensor] = None,
776
- ) -> Tuple[Tensor, Tensor, Tensor]:
777
- r"""
778
- Performs the in-projection step of the attention operation. This is simply
779
- a triple of linear projections, with shape constraints on the weights which
780
- ensure embedding dimension uniformity in the projected outputs.
781
- Output is a triple containing projection tensors for query, key and value.
782
- Args:
783
- q, k, v: query, key and value tensors to be projected.
784
- w_q, w_k, w_v: weights for q, k and v, respectively.
785
- b_q, b_k, b_v: optional biases for q, k and v, respectively.
786
- Shape:
787
- Inputs:
788
- - q: :math:`(Qdims..., Eq)` where Eq is the query embedding dimension and Qdims are any
789
- number of leading dimensions.
790
- - k: :math:`(Kdims..., Ek)` where Ek is the key embedding dimension and Kdims are any
791
- number of leading dimensions.
792
- - v: :math:`(Vdims..., Ev)` where Ev is the value embedding dimension and Vdims are any
793
- number of leading dimensions.
794
- - w_q: :math:`(Eq, Eq)`
795
- - w_k: :math:`(Eq, Ek)`
796
- - w_v: :math:`(Eq, Ev)`
797
- - b_q: :math:`(Eq)`
798
- - b_k: :math:`(Eq)`
799
- - b_v: :math:`(Eq)`
800
- Output: in output triple :math:`(q', k', v')`,
801
- - q': :math:`[Qdims..., Eq]`
802
- - k': :math:`[Kdims..., Eq]`
803
- - v': :math:`[Vdims..., Eq]`
804
- """
805
- Eq, Ek, Ev = q.size(-1), k.size(-1), v.size(-1)
806
- assert w_q.shape == (Eq, Eq), f"expecting query weights shape of {(Eq, Eq)}, but got {w_q.shape}"
807
- assert w_k.shape == (Eq, Ek), f"expecting key weights shape of {(Eq, Ek)}, but got {w_k.shape}"
808
- assert w_v.shape == (Eq, Ev), f"expecting value weights shape of {(Eq, Ev)}, but got {w_v.shape}"
809
- assert b_q is None or b_q.shape == (Eq,), f"expecting query bias shape of {(Eq,)}, but got {b_q.shape}"
810
- assert b_k is None or b_k.shape == (Eq,), f"expecting key bias shape of {(Eq,)}, but got {b_k.shape}"
811
- assert b_v is None or b_v.shape == (Eq,), f"expecting value bias shape of {(Eq,)}, but got {b_v.shape}"
812
- return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
 
1
  from functools import partial
2
  import numpy as np
3
+
 
4
  import torch
5
  from torch import nn
 
 
 
 
6
  from torch.nn.init import trunc_normal_
 
 
 
7
 
8
  def get_2d_sincos_pos_embed(embed_dim, image_size):
9
  """
 
55
  emb = np.concatenate([emb_sin, emb_cos], axis=-1) # (H, W, D)
56
  return emb
57
 
58
+
59
  class Resampler(nn.Module):
60
  """
61
  A 2D perceiver-resampler network with one cross attention layers by
 
82
  self.max_size = max_size
83
 
84
  self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim))
85
+ trunc_normal_(self.query, std=.02)
86
 
87
  if kv_dim is not None and kv_dim != embed_dim:
88
  self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False)
89
  else:
90
  self.kv_proj = nn.Identity()
91
 
92
+ self.attn = nn.MultiheadAttention(embed_dim, num_heads)
93
  self.ln_q = norm_layer(embed_dim)
94
  self.ln_kv = norm_layer(embed_dim)
95
 
 
97
  self.proj = nn.Parameter((embed_dim ** -0.5) * torch.randn(embed_dim, embed_dim))
98
 
99
  self._set_2d_pos_cache(self.max_size)
100
+ self.apply(self._init_weights)
101
 
102
  def _set_2d_pos_cache(self, max_size, device='cpu'):
 
 
103
  pos_embed = torch.from_numpy(get_2d_sincos_pos_embed(self.embed_dim, max_size)).float().to(device)
104
  self.register_buffer("pos_embed", pos_embed, persistent=False)
105
 
 
160
  return x
161
 
162
  def _repeat(self, query, N: int):
163
+ return query.unsqueeze(1).repeat(1, N, 1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tokenization_minicpmv_fast.py DELETED
@@ -1,51 +0,0 @@
1
- import json
2
-
3
- from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
4
-
5
-
6
- class MiniCPMVTokenizerFast(PreTrainedTokenizerFast):
7
- def __init__(self, **kwargs):
8
- super().__init__(**kwargs)
9
- self.eot_token = "<|eot_id|>"
10
- self.im_start = "<image>"
11
- self.im_end = "</image>"
12
- self.ref_start = "<ref>"
13
- self.ref_end = "</ref>"
14
- self.box_start = "<box>"
15
- self.box_end = "</box>"
16
- self.quad_start = "<quad>"
17
- self.quad_end = "</quad>"
18
- self.slice_start = "<slice>"
19
- self.slice_end = "</slice>"
20
-
21
- @property
22
- def eos_id(self):
23
- return self.eos_token_id
24
-
25
- @property
26
- def bos_id(self):
27
- return self.bos_token_id
28
-
29
- @property
30
- def unk_id(self):
31
- return self.unk_token_id
32
-
33
- @property
34
- def eot_id(self):
35
- return self.convert_tokens_to_ids(self.eot_token)
36
-
37
- @property
38
- def im_start_id(self):
39
- return self.convert_tokens_to_ids(self.im_start)
40
-
41
- @property
42
- def im_end_id(self):
43
- return self.convert_tokens_to_ids(self.im_end)
44
-
45
- @staticmethod
46
- def escape(text: str) -> str:
47
- return text
48
-
49
- @staticmethod
50
- def unescape(text: str) -> str:
51
- return text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tokenizer_config.json CHANGED
@@ -2051,7 +2051,7 @@
2051
  },
2052
  "auto_map": {
2053
  "AutoTokenizer": [
2054
- "tokenization_minicpmv_fast.MiniCPMVTokenizerFast",
2055
  null
2056
  ]
2057
  },
@@ -2066,7 +2066,7 @@
2066
  "model_max_length": 1000000000000000019884624838656,
2067
  "pad_token": "!",
2068
  "padding_side": "right",
2069
- "tokenizer_class": "MiniCPMVTokenizerFast",
2070
  "truncation_side": "right",
2071
  "unk_token": "<unk>"
2072
  }
 
2051
  },
2052
  "auto_map": {
2053
  "AutoTokenizer": [
2054
+ "modeling_minicpmv.PreTrainedTokenizerFastWrapper",
2055
  null
2056
  ]
2057
  },
 
2066
  "model_max_length": 1000000000000000019884624838656,
2067
  "pad_token": "!",
2068
  "padding_side": "right",
2069
+ "tokenizer_class": "PreTrainedTokenizerFastWrapper",
2070
  "truncation_side": "right",
2071
  "unk_token": "<unk>"
2072
  }