Edit model card

OpenAlpaca: A Fully Open-Source Instruction-Following Model Based On OpenLLaMA

In this repo, we release a permissively licensed open-source instruction-following model based on OpenLLaMA. In this release, we release a public preview of the 7B OpenAlpaca model based on the previewed version of OpenLLaMA that is a 3B model trained with 600 billion tokens. We provide PyTorch weights of OpenAlpaca. Stay tuned for our forthcoming updates!

[Project Page] (https://github.com/yxuansu/OpenAlpaca)

Dataset and Training

We train our model on the dolly 15k dataset released by Databricks. The training configurations are provided in the table below. The training takes on 8 x A100(40G) GPUs and lasts for around 30 minutes.

Batch Size 64
Learning rate 2e-5
Epochs 3
Max length 1024

Example Usage

Below shows an example on how to use OpenAlpaca

import torch
from transformers import LlamaForCausalLM, LlamaTokenizer

# the previewed version of OpenAlpaca
model_path = r'openllmplayground/openalpaca_3b_600bt_preview'
tokenizer = LlamaTokenizer.from_pretrained(model_path)
model = LlamaForCausalLM.from_pretrained(model_path).cuda()
tokenizer.bos_token_id, tokenizer.eos_token_id = 1,2 # see https://github.com/openlm-research/open_llama#preview-weights-release-and-usage

# same prompt as provided in https://crfm.stanford.edu/2023/03/13/alpaca.html
instruction = r'What is an alpaca? How is it different from a llama?'
'''
instruction = r'Write an e-mail to congratulate new Standford admits and mention that you are excited about meeting all of them in person.'
instruction = r'What is the capital of Tanzania?'
instruction = r'Write a well-thought out abstract for a machine learning paper that proves that 42 is the optimal seed for training neural networks.'
'''

prompt_no_input = f'Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:'
tokens = tokenizer.encode(prompt_no_input)

tokens = torch.LongTensor(tokens).unsqueeze(0)
instance = {'input_ids': tokens,
                    'top_k': 50,
                    'top_p': 0.9,
                    'generate_len': 128}
                    
length = len(tokens[0])
with torch.no_grad():
    rest = model.generate(
            input_ids=tokens, 
            max_length=length+instance['generate_len'], 
            use_cache=True, 
            do_sample=True, 
            top_p=instance['top_p'], 
            top_k=instance['top_k']
        )
        
output = rest[0][length:]
string = tokenizer.decode(output, skip_special_tokens=True)
print(f'[!] Generation results: {string}')

License and Usage

OpenAlpaca is permissively licensed under the Apache 2.0 license and can be used freely for academic/commercial purposes.

Contact

We would love to get feedback from the community. If you have any questions, please open an issue or contact us.

OpenAlpaca is developed by: Yixuan Su*, Tian Lan*, and Deng Cai (The first two members* contributed equally.)

Reference:

If you found OpenAlpaca useful in your research or applications, please kindly cite using the following BibTeX:

@misc{openalpaca,
  author = {Yixuan Su and Tian Lan and Deng Cai},
  title = {OpenAlpaca: A Fully Open-Source Instruction-Following Model Based On OpenLLaMA},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/yxuansu/OpenAlpaca}},
}
@software{openlm2023openllama,
  author = {Xinyang Geng and Hao Liu},
  title = {OpenLLaMA: An Open Reproduction of LLaMA},
  month = May,
  year = 2023,
  url = {https://github.com/openlm-research/open_llama}
}
@misc{alpaca,
  author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto },
  title = {Stanford Alpaca: An Instruction-following LLaMA model},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}},
}
@article{touvron2023llama,
  title={Llama: Open and efficient foundation language models},
  author={Hugo Touvron and Thibaut Lavril and Gautier Izacard and Xavier Martinet and Marie{-}Anne Lachaux and Timoth{\'{e}}e Lacroix and Baptiste Rozi{\`{e}}re and Naman Goyal and Eric Hambro and Faisal Azhar and Aur{\'{e}}lien Rodriguez and Armand Joulin and Edouard Grave and Guillaume Lample},
  journal={arXiv preprint arXiv:2302.13971},
  year={2023}
}
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using openllmplayground/openalpaca_3b_600bt_preview 1