ireneisdoomed's picture
chore: update model
6a3a2c7 verified
metadata
library_name: sklearn
tags:
  - sklearn
  - skops
  - tabular-classification
model_format: skops
model_file: classifier.skops
widget:
  - structuredData:
      distanceTssMean:
        - 0.005956897512078285
        - 0.0535997599363327
        - 0.0007216916419565678
      distanceTssMinimum:
        - 0.00023104190768208355
        - 0.008684908039867878
        - 0
      eqtlColocClppMaximum:
        - 0
        - 0
        - 0.000029394341254374012
      eqtlColocClppMaximumNeighborhood:
        - -1.0844675302505493
        - 0
        - -2.4551262855529785
      eqtlColocLlrMaximum:
        - 0
        - 0
        - -5.864833831787109
      eqtlColocLlrMaximumNeighborhood:
        - 0.6375470161437988
        - 0
        - -0.6227747797966003
      pqtlColocClppMaximum:
        - 0
        - 0
        - 0
      pqtlColocClppMaximumNeighborhood:
        - 0
        - 0
        - 0
      pqtlColocLlrMaximum:
        - 0
        - 0
        - 0
      pqtlColocLlrMaximumNeighborhood:
        - 0
        - 0
        - 0
      sqtlColocClppMaximum:
        - 0
        - 0
        - 0
      sqtlColocClppMaximumNeighborhood:
        - -1.75723135471344
        - 0
        - -3.7946090698242188
      sqtlColocLlrMaximum:
        - 0
        - 0
        - 0
      sqtlColocLlrMaximumNeighborhood:
        - 0.5101715922355652
        - 0
        - 0.5695658922195435
      studyLocusId:
        - -3543201973216145400
        - -4859077617144690000
        - -870008257560905900
      tuqtlColocClppMaximum:
        - 0.014770692214369774
        - 0
        - 0
      tuqtlColocClppMaximumNeighborhood:
        - -2.5447564125061035
        - 0
        - -2.497274160385132
      tuqtlColocLlrMaximum:
        - 2.057318925857544
        - 0
        - 0
      tuqtlColocLlrMaximumNeighborhood:
        - 0.35586467385292053
        - 0
        - -0.7435243129730225
      vepMaximum:
        - 0.003306703409180045
        - 0
        - 0.00005660330498358235
      vepMaximumNeighborhood:
        - 0.005385574419051409
        - 0
        - 0.026831166818737984
      vepMean:
        - 0.001106836018152535
        - 0
        - 0.000014581254617951345
      vepMeanNeighborhood:
        - 0.0007926996913738549
        - 0
        - 0.00018241332145407796

Model description

The locus-to-gene (L2G) model derives features to prioritise likely causal genes at each GWAS locus based on genetic and functional genomics features. The main categories of predictive features are:

    - Distance: (from credible set variants to gene)
    - Molecular QTL Colocalization
    - Chromatin Interaction: (e.g., promoter-capture Hi-C)
    - Variant Pathogenicity: (from VEP)

    More information at: https://opentargets.github.io/gentropy/python_api/methods/l2g/_l2g/
    

Intended uses & limitations

[More Information Needed]

Training Procedure

Gradient Boosting Classifier

Hyperparameters

Click to expand
Hyperparameter Value
ccp_alpha 0.0
criterion friedman_mse
init
learning_rate 0.1
loss log_loss
max_depth 5
max_features
max_leaf_nodes
min_impurity_decrease 0.0
min_samples_leaf 1
min_samples_split 2
min_weight_fraction_leaf 0.0
n_estimators 100
n_iter_no_change
random_state 42
subsample 1.0
tol 0.0001
validation_fraction 0.1
verbose 0
warm_start False

How to Get Started with the Model

To use the model, you can load it using the LocusToGeneModel.load_from_hub method. This will return a LocusToGeneModel object that can be used to make predictions on a feature matrix. The model can then be used to make predictions using the predict method.

    More information can be found at: https://opentargets.github.io/gentropy/python_api/methods/l2g/model/
    

Citation

https://doi.org/10.1038/s41588-021-00945-5

License

MIT