Jingya's picture
Jingya HF staff
Librarian Bot: Add base_model information to model (#5)
c4ffc80
|
raw
history blame
6.5 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - banking77
metrics:
  - accuracy
  - f1
widget:
  - text: Could you assist me in finding my lost card?
    example_title: Example 1
  - text: I found my lost card. Am I still able to use it?
    example_title: Example 2
  - text: >-
      Hey, I thought my topup was all done but now the money is gone again –
      what’s up with that?
    example_title: Example 3
  - text: Tell me why my topup wouldn’t go through?
    example_title: Example 4
base_model: distilbert-base-uncased
model-index:
  - name: distilbert-base-uncased-finetuned-banking77
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: banking77
          type: banking77
          args: default
        metrics:
          - type: accuracy
            value: 0.925
            name: Accuracy
          - type: f1
            value: 0.925018570680639
            name: F1
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: banking77
          type: banking77
          config: default
          split: test
        metrics:
          - type: accuracy
            value: 0.925
            name: Accuracy
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDllOGYzMjM1MDlmMzc1MjFhNDAxZGRkOTI2Y2M3MTExNWViZjIxMWMyMzcyMzE2YzA2M2U1ODBmMDk4ZTc3ZiIsInZlcnNpb24iOjF9.m4W8jIWPuO_PgIo9V1K3I3DhHQ4ZbV1CDK3NOUhQS4xgrFE7DzFkPoku9tIhID4HfVwh9CdlTFBV5DNk-YoCCw
          - type: precision
            value: 0.9282769473964405
            name: Precision Macro
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTNjNDEzMTY4ZjYyZDZmNmZhNDgxYzZhMmU2NDk1OTQ2ODQ3MDllZWU3ZjY4ZGJkNGQ0MTcxZDAxMjBiNzdmMSIsInZlcnNpb24iOjF9.yH8l0iirnQlO4VAlXR1mUxSJ68N_ro8f4v_56tMidva8dixFPPpQ4_zWQ9br6iBVH-pMHFrPL2vSsRldxRjyAw
          - type: precision
            value: 0.925
            name: Precision Micro
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzYwOTExZDI0ZGVhM2E5NzA0YTFhYjQ3NThlZWQ3ZTg2YTVjYjZhMzU1MDI3ZjkyY2NiNDBlYTAzYzYwYjdmMyIsInZlcnNpb24iOjF9.Qj0ni7-zG991npWW9NTutH1qUkLLZnJ13TxWZynxfef4VBKpaC9Ar-4Z8NSgrlNvghndvVHvvYQ47zoUnKYfCg
          - type: precision
            value: 0.9282769473964405
            name: Precision Weighted
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWU4NmZlYmYyMTI5OTIwMjAwNDk4OTQ3NGYzYzk0MzgyYmFiZTUyMzEzOGVjMTA2MzJhZGI1NzdjOWU5N2I5ZiIsInZlcnNpb24iOjF9.YTmQFFjzy2387Puvwnj_BtYLNXtEykUlHSvl027TfnpYyjCmsixU3r5yZjkI4ZUy6W5Xy5t9bluhZupmyGx5CA
          - type: recall
            value: 0.9250000000000002
            name: Recall Macro
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmQ2ZWFlN2NkN2IzMGE4NzBhMDI2MTk3OGYxMmMxNDNmMzhiMmU3NTAzYmFiNTMyMDg0OTczZGYyNTE2NDc5MiIsInZlcnNpb24iOjF9.lJbWAB8po1DgJO-Or_C-b7F5jp_IMMPhxcUqyJEbT5Au94s6EgIlFHzN7eK9tCC2c-AvCcs-hpItnQjUqqE1AQ
          - type: recall
            value: 0.925
            name: Recall Micro
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2Y0ZGVlN2M0YjQ5NzcxMTJkNmVhNjc3ZjI1OTQyOTQ2MmExNDFhODVjM2VmMGM0NGNlY2U1ZDYwMjU0MmZjZCIsInZlcnNpb24iOjF9.Gqm7KCYZpm97nE4J-YazB3cWIVwCmRWrRoAY6Yrc3YP4GqVpSr6isfH53CtZ6ka5byohMeFb8_XbIYW3xRUCCA
          - type: recall
            value: 0.925
            name: Recall Weighted
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGExMGRjNTU5ZGRiMThkMTAzZjA0ODkzZDJiNzMxMTZjYmJkNjJkZjk0YzY4MTA4MjFmNjk0Y2IzNjkxZTJiMyIsInZlcnNpb24iOjF9.GaYizK6iJY3zcgrkMEAOrTanjjYTPOEO8hOoe66lBQ7J5DIIFQBDhY89qOYFjuZnypgT7_s7B499Lx_XJiMNCg
          - type: f1
            value: 0.9250185706806391
            name: F1 Macro
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzc1NGIxYmRkZTY1MGM0NTQzNTU0ZjEwMDdjNjIxYmYxYTViZWY0MGNkMWMyZjBjYjNlMDNlY2UyNTg4ZmE4OCIsInZlcnNpb24iOjF9.06bcSulLP3e22fwjcvqEjr_5Pa1kzMSsKiw_qI07tfXqtigw7RGKW80RtfssaSHbfRmdmnGkqFI7UIO56q1UCQ
          - type: f1
            value: 0.925
            name: F1 Micro
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTg2NmU2MzFmN2NmMDA5NDg3NzQ1ZWEyZGU2ZDdmZDU5ZTcxOTYwN2RkZWM0OTYyY2FlNGRmMzBmODYxZDMxMSIsInZlcnNpb24iOjF9.gLeGhILsq8eP65ORrWpeA_hNz0zuqBmI-r5g7HR-qZdDyMyEEZrBlFqSDGcSRdqCvjMS7zRXksHSa6Y8QzKPCA
          - type: f1
            value: 0.925018570680639
            name: F1 Weighted
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTMyNzVlZjgzZDZhOTUzZjZjYjg1OTU1NjcxMWQ1NDIxM2M2MzcwZmQ2YzkyNjc3ZjRlNjYwMTY0NDZmNDQxMCIsInZlcnNpb24iOjF9.rfqfrjWGp0_PC7MfUfl53YAwdN5FOZWzf5JF7wM9URSbhWHtWeh170xf9m1N3pCMseE5-66KndSyCZttt8C7Cg
          - type: loss
            value: 0.2934279143810272
            name: loss
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2UyY2U2MGM2YWFmNDA0MTUyMTg1MzdkZjRiNmI0NTVlMGJiNmViNDE1ZDc0YThlYjBhNWJlMTM0NzQ0NjkxYSIsInZlcnNpb24iOjF9.SuSSft3vlKA8Yx5vXP9bLRSaIa0D7pGtMHHYXgAS33baC82iTHyD8H41NQFk1b3B0dMHHLC458yH4gEhgBdzBA

distilbert-base-uncased-finetuned-banking77

This model is a fine-tuned version of distilbert-base-uncased on the banking77 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2935
  • Accuracy: 0.925
  • F1: 0.9250

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 9.686210354742596e-05
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 40
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.0 126 1.1457 0.7896 0.7685
No log 2.0 252 0.4673 0.8906 0.8889
No log 3.0 378 0.3488 0.9150 0.9151
0.9787 4.0 504 0.3238 0.9180 0.9179
0.9787 5.0 630 0.3126 0.9225 0.9226

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.11.0
  • Datasets 2.0.0
  • Tokenizers 0.11.6