Edit model card

output-model-directory

This is a merge of pre-trained language models created using mergekit.

Merge Details

Merge Method

This model was merged using the TIES merge method using deepseek-ai/deepseek-coder-6.7b-base as a base.

Models Merged

The following models were included in the merge:

Configuration

The following YAML configuration was used to produce this model:

models:
  - model: deepseek-ai/deepseek-coder-6.7b-instruct
    parameters:
      density: [1, 0.7, 0.1] # density gradient
      weight: 1.0
  - model: m-a-p/OpenCodeInterpreter-DS-6.7B
    parameters:
      density: 0.5
      weight: [0, 0.3, 0.7, 1] # weight gradient
merge_method: ties
base_model: deepseek-ai/deepseek-coder-6.7b-base
parameters:
  normalize: true
  int8_mask: true
dtype: float16

How to Use

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("ori-cloud/ds-trinity-7b-v1")
model = AutoModelForCausalLM.from_pretrained("ori-cloud/ds-trinity-7b-v1", torch_dtype=torch.bfloat16,
    device_map="auto")
prompt = "#write a quick sort algorithm"
inputs = tokenizer.apply_chat_template(
        [{'role': 'user', 'content': prompt }],
        return_tensors="pt"
    ).to(model.device)
outputs = model.generate(
    inputs, 
    max_new_tokens=1024,
    do_sample=False,
    pad_token_id=tokenizer.eos_token_id,
    eos_token_id=tokenizer.eos_token_id,
)
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
Downloads last month
8
Safetensors
Model size
6.74B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ori-cloud/ds-trinity-7b-v1