oskarandrsson's picture
End of training
7fa7760 verified
|
raw
history blame
2.55 kB
metadata
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: w2v-bert-2.0-sv
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: sv-SE
          split: test
          args: sv-SE
        metrics:
          - name: Wer
            type: wer
            value: 0.10046931592103249

w2v-bert-2.0-sv

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1962
  • Wer: 0.1005

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.075 0.7407 300 0.3441 0.3057
0.2837 1.4815 600 0.2995 0.2274
0.2081 2.2222 900 0.2443 0.1768
0.1579 2.9630 1200 0.2143 0.1493
0.1248 3.7037 1500 0.2165 0.1504
0.0934 4.4444 1800 0.1869 0.1284
0.0719 5.1852 2100 0.2072 0.1216
0.0573 5.9259 2400 0.1949 0.1195
0.0436 6.6667 2700 0.2025 0.1142
0.0317 7.4074 3000 0.2003 0.1097
0.0256 8.1481 3300 0.1942 0.1060
0.0169 8.8889 3600 0.1851 0.1030
0.0121 9.6296 3900 0.1962 0.1005

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1