SentenceTransformer based on NbAiLab/nb-sbert-base
This is a sentence-transformers model finetuned from NbAiLab/nb-sbert-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: NbAiLab/nb-sbert-base
- Maximum Sequence Length: 75 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ostoveland/SBertBaseMittanbudver1")
# Run inference
sentences = [
'Fullføre utvendig forefallent arbeid',
'elektriker på bolig på 120kvm',
'Renovere bad',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
test-triplet-evaluation
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9859 |
dot_accuracy | 0.0169 |
manhattan_accuracy | 0.9845 |
euclidean_accuracy | 0.9838 |
max_accuracy | 0.9859 |
Training Details
Training Datasets
Unnamed Dataset
- Size: 55,426 training samples
- Columns:
sentence_0
,sentence_1
, andsentence_2
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 sentence_2 type string string string details - min: 3 tokens
- mean: 11.65 tokens
- max: 44 tokens
- min: 4 tokens
- mean: 10.92 tokens
- max: 31 tokens
- min: 3 tokens
- mean: 10.49 tokens
- max: 35 tokens
- Samples:
sentence_0 sentence_1 sentence_2 Bygge støttemur
Støttemur
Bytte lås på dörr
Understell bord i stål
Lage stålunderstell til bord
Bygge trebord
Reparasjon vannbåren varme
Vannbåren varme til enebolig
* Fortsatt ledig: ombygning av eksisterende kjeller
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Unnamed Dataset
- Size: 22,563 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 4 tokens
- mean: 11.09 tokens
- max: 37 tokens
- min: 8 tokens
- mean: 12.94 tokens
- max: 30 tokens
- Samples:
sentence_0 sentence_1 utforing av gavlvegg
query: utforing av vegg
Montere kjøkken
query: kjøkkenmontering
Sette opp lettvegg med skyvedør, bygge bod i carport, forlenge tak på carport
query: bygge bod i carport
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Unnamed Dataset
- Size: 18,735 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 3 tokens
- mean: 13.08 tokens
- max: 46 tokens
- min: 4 tokens
- mean: 9.52 tokens
- max: 27 tokens
- min: 0.05
- mean: 0.51
- max: 0.95
- Samples:
sentence_0 sentence_1 label Renovering av hus - plantegninger og fasade
elektriker på bolig på 120kvm
0.15
Blending av innvendig dør
Tette igjen døråpning
0.75
Fortsatt ledig: Kappe teglstein på pipeløp
Murearbeid
0.45
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 32per_device_eval_batch_size
: 32num_train_epochs
: 6multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 6max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | test-triplet-evaluation_max_accuracy |
---|---|---|---|
0.2844 | 500 | 3.6092 | - |
0.5688 | 1000 | 2.9852 | - |
0.8532 | 1500 | 2.7542 | - |
1.0011 | 1760 | - | 0.9831 |
1.1365 | 2000 | 2.5467 | - |
1.4209 | 2500 | 2.3263 | - |
1.7053 | 3000 | 2.2608 | - |
1.9898 | 3500 | 2.2042 | - |
2.0011 | 3520 | - | 0.9859 |
2.2730 | 4000 | 2.1615 | - |
2.5575 | 4500 | 2.0934 | - |
2.8419 | 5000 | 2.1226 | - |
3.0011 | 5280 | - | 0.9859 |
3.1251 | 5500 | 2.1977 | - |
3.4096 | 6000 | 2.1209 | - |
3.6940 | 6500 | 2.1006 | - |
3.9784 | 7000 | 2.1495 | - |
4.0011 | 7040 | - | 0.9859 |
4.2617 | 7500 | 2.1792 | - |
4.5461 | 8000 | 2.0958 | - |
4.8305 | 8500 | 2.1065 | - |
5.0011 | 8800 | - | 0.9859 |
5.1138 | 9000 | 2.1762 | - |
5.3982 | 9500 | 2.1347 | - |
5.6826 | 10000 | 2.1198 | - |
5.9670 | 10500 | 2.1251 | - |
5.9943 | 10548 | - | 0.9859 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for ostoveland/SBertBaseMittanbudver1
Base model
NbAiLab/nb-sbert-baseEvaluation results
- Cosine Accuracy on test triplet evaluationself-reported0.986
- Dot Accuracy on test triplet evaluationself-reported0.017
- Manhattan Accuracy on test triplet evaluationself-reported0.984
- Euclidean Accuracy on test triplet evaluationself-reported0.984
- Max Accuracy on test triplet evaluationself-reported0.986