SChem5Labels-google-t5-v1_1-base-intra_model
This model is a fine-tuned version of google/t5-v1_1-base on the None dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.9822
- Loss: nan
- Losses: [1, 1, 0.6000000000000001, 1, 0.8, 1, 1, 0.4, 1, 0.6000000000000001, 1, 0.8, 0.6000000000000001, 0.8, 1.0, 0.4, 1, 0.6000000000000001, 0.8, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 0.8, 1.0, 0.6000000000000001, 1, 0.4, 0.4, 1, 0.4, 1, 1, 1, 0.8, 0.4, 1, 1, 1, 0.8, 0.8, 1, 1, 0.4, 0.4, 1, 0.4, 0.8, 0.8, 1, 0.8, 1, 0.0, 1, 1, 0.8, 0.8, 0.8, 0.8, 0.8, 1.0, 0.4, 0.4, 0.4, 0.8, 0.8, 0.8, 0.4, 1, 0.4, 0.4, 0.8, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.8, 0.8, 0.8, 0.4, 0.8, 0.8, 0.6000000000000001, 0.4, 0.0, 0.6000000000000001, 0.8, 0.8, 0.4, 0.4, 0.4, 0.6000000000000001, 0.0, 0.4, 0.4, 0.8, 0.8, 0.8, 0.8, 0.0, 0.4, 0.4, 1, 0.0, 0.6000000000000001, 0.8, 0.6000000000000001, 0.8, 0.4, 0.4, 0.8, 0.8, 0.4, 0.4, 0.8, 0.4, 0.8, 0.8, 1, 0.4, 0.8, 0.8, 0.4, 0.4, 0.8, 0.4, 0.4, 1, 0.4, 0.8, 0.8, 0.8, 0.8, 0.8, 0.4, 0.8, 0.8, 0.8, 0.8, 0.4, 0.4, 0.4, 0.8, 0.4, 0.8, 0.4, 0.8, 0.8, 0.8, 1, 0.8, 0.8, 0.8, 0.6000000000000001, 0.4, 1, 0.4, 1, 0.8, 0.8, 0.4, 0.8, 0.8, 0.8, 0.8, 1, 0.8, 1, 0.8, 1, 0.4, 0.4, 1, 0.8, 0.8, 1, 1, 1, 0.8, 1, 0.4, 0.6000000000000001, 0.4, 0.4, 0.4, 1, 0.4, 0.8, 0.8, 0.6000000000000001, 0.8, 0.8, 0.4, 0.8, 1, 0.8, 0.8, 1, 1, 0.4, 0.4, 0.4, 0.6000000000000001, 0.8, 0.8, 0.8, 1, 0.8, 0.4, 0.8, 1.0, 0.8, 1.0, 1, 0.4, 0.8, 0.8, 1, 1, 0.8, 1, 1.0, 1, 0.4, 1, 0.6000000000000001, 0.8, 1, 1.0, 1, 0.6000000000000001, 0.4, 0.4, 0.6000000000000001, 1.0, 0.8, 0.8, 0.4, 1, 1, 1, 0.8, 0.8, 1.0, 0.8, 0.8, 0.6000000000000001, 0.8, 0.4, 0.8, 1, 1, 1.0, 0.8, 1.0, 1.0, 0.8, 1, 0.8, 0.8, 1.0, 0.8, 1, 0.8, 0.6000000000000001, 0.8, 1, 0.4, 0.8, 0.4, 0.8, 0.8, 1, 1, 0.4, 0.4, 1, 0.8, 1, 0.8, 0.6000000000000001, 0.6000000000000001, 1, 0.6000000000000001, 0.4, 1, 0.8, 0.4, 0.4, 0.4, 0.4, 0.4, 0.8, 0.8, 0.8, 0.8, 1, 0.4, 0.8, 0.4, 0.4, 1, 1, 1, 0.4, 0.8, 0.4, 1, 1, 0.4, 1.0, 1.0, 0.4, 0.6000000000000001, 0.8, 0.8, 0.8, 0.8, 0.6000000000000001, 0.8, 0.8, 0.8, 0.4, 0.8, 0.4, 0.0, 0.8, 0.4, 0.4, 0.8, 1, 1, 0.4, 0.6000000000000001, 1, 0.6000000000000001, 0.8, 1, 0.6000000000000001, 1.0, 1, 1.0, 0.4, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0]
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 200
Training results
Training Loss | Epoch | Step | Train Loss | Validation Loss | Losses |
---|---|---|---|---|---|
405015552.0 | 1.0 | 99 | 0.8747 | 389655488.0 | [0.8, 0.8, 1, 1, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 0.8, 0.6000000000000001, 0.6000000000000001, 0.6000000000000001, 1, 1, 0.6000000000000001, 0.8, 0.8, 1, 1, 1, 0.8, 1, 0.6000000000000001, 1, 1, 1, 1, 1, 1.0, 0.4, 1, 1, 0.8, 0.2, 1, 1, 1, 1, 0.6000000000000001, 1, 1, 1, 1, 1.0, 1, 0.8, 1, 1, 1, 1, 0.8, 1, 1, 0.6000000000000001, 1, 1, 1, 0.8, 1, 1, 1, 0.8, 0.8, 1, 1, 1, 1, 0.8, 1, 1, 0.8, 1, 0.8, 1, 0.8, 0.8, 0.8, 0.8, 1, 1, 0.8, 1, 1, 1, 0.8, 0.0, 1, 0.4, 1, 1, 1, 1, 1, 1, 1, 0.6000000000000001, 1, 1, 1.0, 1, 0.8, 1, 1, 0.0, 1, 1, 1, 1, 1, 0.8, 1.0, 0.6000000000000001, 1, 1, 1, 1, 1, 1, 0.6000000000000001, 0.0, 1.0, 1, 1, 0.2, 1, 1.0, 1, 1, 1, 0.8, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 1, 1, 0.8, 0.2, 1, 1, 1, 1, 0.8, 1, 1, 1, 1, 0.8, 0.8, 0.8, 0.8, 1, 1.0, 1, 1, 1, 1, 0.0, 1, 1, 0.6000000000000001, 0.6000000000000001, 0.8, 1, 0.8, 0.8, 1, 1, 1.0, 0.4, 0.6000000000000001, 1, 0.8, 0.8, 0.4, 1, 0.4, 1, 1, 0.4, 1, 1, 1.0, 1, 1, 0.8, 1.0, 0.8, 1, 1, 1, 0.4, 0.2, 0.8, 1, 0.4, 0.8, 1, 1, 0.8, 0.8, 1, 1, 0.6000000000000001, 1, 0.4, 1, 1, 1, 1, 1, 1, 1.0, 0.8, 1, 1, 1, 1.0, 1, 1, 0.8, 1.0, 1, 1, 1, 1, 1, 1, 1, 1, 0.4, 1, 0.4, 1, 1, 0.6000000000000001, 1.0, 1, 0.8, 1, 0.6000000000000001, 0.8, 1, 1, 1, 1, 1, 1, 1.0, 0.6000000000000001, 1.0, 0.4, 1, 1, 0.6000000000000001, 1, 0.8, 0.8, 1, 1, 1, 1, 0.6000000000000001, 1, 1.0, 0.4, 1, 1, 0.8, 0.6000000000000001, 1, 1, 1, 1, 0.2, 0.4, 1, 1.0, 1, 0.8, 0.8, 0.8, 1, 1.0, 1, 0.4, 1, 1, 0.6000000000000001, 1, 0.4, 1, 0.8, 0.6000000000000001, 1, 1, 0.0, 0.8, 1, 1, 0.6000000000000001, 0.6000000000000001, 1, 0.8, 1, 1, 1, 1, 0.4, 1, 0.4, 1, 1, 1, 1, 0.4, 0.6000000000000001, 1, 1, 1, 0.8, 1.0, 1, 1.0, 1, 1.0, 1, 1, 0.2, 1, 1, 1, 1, 1, 0.8, 1, 1, 1, 0.4, 1, 1, 1, 1, 1, 1, 0.0, 0.8, 0.6000000000000001, 1] |
414025830.4 | 2.0 | 198 | 0.7287 | 389655456.0 | [0.8, 0.8, 0.8, 1, 0.0, 0.6000000000000001, 0.8, 0.8, 0.6000000000000001, 0.8, 1, 1, 1.0, 0.8, 0.6000000000000001, 0.6000000000000001, 0.4, 1, 1, 0.8, 0.8, 0.8, 0.8, 0.8, 0.6000000000000001, 0.8, 0.8, 0.8, 0.2, 0.8, 0.8, 0.8, 0.8, 0.4, 1, 1, 0.8, 0.8, 0.2, 0.8, 0.8, 0.4, 0.8, 1, 0.8, 1, 1, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 1, 0.8, 0.8, 0.4, 1, 0.4, 0.8, 0.2, 0.8, 1, 0.8, 0.8, 0.8, 1, 0.8, 0.6000000000000001, 0.8, 0.8, 0.8, 0.8, 0.8, 1, 1, 0.8, 0.8, 0.8, 0.8, 0.2, 1, 0.8, 1, 0.8, 0.4, 0.8, 0.0, 0.8, 0.8, 0.0, 0.8, 1, 0.8, 0.6000000000000001, 0.8, 0.8, 0.0, 1, 1, 0.8, 0.8, 0.8, 1, 1, 0.8, 0.8, 0.8, 1, 0.8, 0.4, 0.0, 1.0, 1, 0.8, 0.8, 0.6000000000000001, 0.4, 1, 1, 0.6000000000000001, 0.0, 0.0, 0.8, 1, 0.2, 0.8, 0.6000000000000001, 0.8, 1, 0.8, 0.8, 1, 0.8, 1.0, 0.4, 0.8, 0.8, 0.8, 0.8, 0.8, 1.0, 0.8, 0.8, 0.8, 1, 1, 1, 1.0, 0.8, 0.8, 0.8, 0.8, 1, 0.8, 0.6000000000000001, 0.8, 0.8, 0.4, 1, 1.0, 0.8, 0.8, 0.0, 0.4, 1, 1, 1, 1, 0.8, 0.6000000000000001, 0.8, 0.6000000000000001, 0.8, 0.8, 0.0, 0.6000000000000001, 0.6000000000000001, 0.8, 0.4, 0.8, 0.8, 1, 0.0, 0.6000000000000001, 0.4, 0.2, 1, 0.8, 0.8, 0.8, 1, 0.8, 0.8, 0.8, 0.8, 0.8, 1, 0.4, 0.4, 0.4, 0.8, 0.8, 0.8, 0.8, 0.6000000000000001, 0.8, 0.2, 0.4, 0.8, 0.6000000000000001, 0.6000000000000001, 0.0, 0.8, 0.8, 0.8, 0.8, 1, 0.4, 1, 0.8, 0.8, 1, 1, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.0, 0.8, 0.6000000000000001, 1, 1, 0.8, 0.8, 0.6000000000000001, 1, 0.8, 1, 0.8, 0.8, 0.8, 1.0, 0.8, 1, 0.6000000000000001, 0.8, 0.8, 0.8, 0.8, 0.8, 0.4, 0.8, 0.8, 0.6000000000000001, 0.8, 0.2, 0.8, 1, 0.6000000000000001, 0.8, 0.0, 0.8, 0.8, 0.8, 0.8, 0.6000000000000001, 1, 1, 1, 0.8, 0.6000000000000001, 1, 0.8, 0.6000000000000001, 0.8, 0.0, 1, 0.8, 0.0, 0.6000000000000001, 0.8, 1.0, 0.6000000000000001, 0.8, 0.8, 0.0, 0.8, 0.8, 1, 0.8, 0.8, 0.8, 0.0, 1, 0.8, 0.4, 0.8, 0.6000000000000001, 0.8, 0.8, 0.0, 0.8, 1, 0.8, 0.6000000000000001, 1, 1, 1, 0.0, 0.8, 1, 0.8, 0.0, 0.2, 0.8, 0.4, 0.8, 1, 1, 1, 0.6000000000000001, 0.8, 0.8, 0.8, 0.8, 0.0, 1, 1.0, 0.0, 0.0, 0.8, 0.8, 0.2, 0.0, 0.2, 0.6000000000000001, 1, 1, 0.8, 0.8, 1, 1.0, 0.0, 0.8, 1.0, 0.8, 0.8, 1, 0.8, 0.4, 0.6000000000000001, 0.4, 1] |
408233932.8 | 3.0 | 297 | 0.7276 | 389655456.0 | [0.8, 0.8, 0.8, 1, 0.0, 0.6000000000000001, 0.8, 0.8, 0.6000000000000001, 0.8, 1, 1, 1.0, 0.8, 0.6000000000000001, 0.6000000000000001, 0.4, 1, 1, 0.8, 0.8, 0.8, 0.8, 0.8, 0.6000000000000001, 0.8, 0.8, 0.8, 0.2, 0.8, 0.8, 0.8, 0.8, 0.4, 1, 1, 0.8, 0.8, 0.2, 0.8, 0.8, 0.4, 0.8, 1, 0.8, 1, 1, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 1, 0.8, 0.8, 0.4, 1, 0.4, 0.8, 0.2, 0.8, 1, 0.8, 0.8, 0.8, 1, 0.8, 0.6000000000000001, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 1, 0.8, 0.8, 0.8, 0.8, 0.2, 1, 0.8, 1, 0.8, 0.4, 0.8, 0.0, 0.8, 0.8, 0.0, 0.8, 1, 0.8, 0.6000000000000001, 0.8, 0.8, 0.0, 1, 1, 0.8, 0.8, 0.8, 1, 1, 0.8, 0.8, 0.8, 1, 0.8, 0.4, 0.0, 1.0, 1, 0.8, 0.8, 0.6000000000000001, 0.4, 1, 1, 0.6000000000000001, 0.0, 0.0, 0.8, 1, 0.2, 0.8, 0.6000000000000001, 0.8, 1, 0.8, 0.8, 1, 0.8, 1.0, 0.4, 0.8, 0.8, 0.8, 0.8, 0.8, 1.0, 0.8, 0.8, 0.8, 1, 1, 1, 1.0, 0.8, 0.8, 0.8, 0.8, 1, 0.8, 0.6000000000000001, 0.8, 0.8, 0.4, 1, 1.0, 0.8, 0.8, 0.0, 0.4, 1, 1, 1, 1, 0.8, 0.6000000000000001, 0.8, 0.6000000000000001, 0.8, 0.8, 0.0, 0.8, 0.6000000000000001, 0.8, 0.4, 0.8, 0.8, 1, 0.0, 0.6000000000000001, 0.4, 0.2, 1, 0.8, 0.8, 0.8, 1, 0.8, 0.8, 0.8, 0.8, 0.8, 1, 0.4, 0.4, 0.4, 0.8, 0.8, 0.8, 0.8, 0.6000000000000001, 0.8, 0.2, 0.4, 0.8, 0.6000000000000001, 0.6000000000000001, 0.0, 0.8, 0.8, 0.8, 0.8, 1, 0.4, 1, 0.8, 0.8, 1, 1, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.0, 0.8, 0.6000000000000001, 1, 1, 0.8, 0.8, 0.6000000000000001, 1, 0.8, 1, 0.8, 0.8, 0.8, 1.0, 0.8, 1, 0.6000000000000001, 0.8, 0.8, 0.8, 0.8, 0.8, 0.4, 0.8, 0.8, 0.6000000000000001, 0.8, 0.2, 0.8, 1, 0.6000000000000001, 0.8, 0.0, 0.8, 0.8, 0.8, 0.8, 0.6000000000000001, 1, 1, 1, 0.8, 0.6000000000000001, 1, 0.8, 0.6000000000000001, 0.8, 0.0, 1, 0.8, 0.0, 0.6000000000000001, 0.8, 1.0, 0.6000000000000001, 0.8, 0.8, 0.0, 0.8, 0.8, 1, 0.8, 0.8, 0.8, 0.0, 1, 0.8, 0.4, 0.8, 0.6000000000000001, 0.8, 0.8, 0.0, 0.8, 1, 0.8, 0.6000000000000001, 0.6000000000000001, 1, 1, 0.0, 0.8, 1, 0.8, 0.0, 0.2, 0.8, 0.4, 0.8, 1, 1, 1, 0.6000000000000001, 0.8, 0.8, 0.8, 0.8, 0.0, 1, 1.0, 0.0, 0.0, 0.8, 0.8, 0.2, 0.0, 0.2, 0.6000000000000001, 1, 1, 0.8, 0.8, 1, 1.0, 0.0, 0.8, 1.0, 0.8, 0.8, 1, 0.8, 0.4, 0.6000000000000001, 0.4, 1] |
421449779.2 | 4.0 | 396 | 0.7276 | 389655456.0 | [0.8, 0.8, 0.8, 1, 0.0, 0.6000000000000001, 0.8, 0.8, 0.6000000000000001, 0.8, 1, 1, 1.0, 0.8, 0.6000000000000001, 0.6000000000000001, 0.4, 1, 1, 0.8, 0.8, 0.8, 0.8, 0.8, 0.6000000000000001, 0.8, 0.8, 0.8, 0.2, 0.8, 0.8, 0.8, 0.8, 0.4, 1, 1, 0.8, 0.8, 0.2, 0.8, 0.8, 0.4, 0.8, 1, 0.8, 1, 1, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 1, 0.8, 0.8, 0.4, 1, 0.4, 0.8, 0.2, 0.8, 1, 0.8, 0.8, 0.8, 1, 0.8, 0.6000000000000001, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 1, 0.8, 0.8, 0.8, 0.8, 0.2, 1, 0.8, 1, 0.8, 0.4, 0.8, 0.0, 0.8, 0.8, 0.0, 0.8, 1, 0.8, 0.6000000000000001, 0.8, 0.8, 0.0, 1, 1, 0.8, 0.8, 0.8, 1, 1, 0.8, 0.8, 0.8, 1, 0.8, 0.4, 0.0, 1.0, 1, 0.8, 0.8, 0.6000000000000001, 0.4, 1, 1, 0.6000000000000001, 0.0, 0.0, 0.8, 1, 0.2, 0.8, 0.6000000000000001, 0.8, 1, 0.8, 0.8, 1, 0.8, 1.0, 0.4, 0.8, 0.8, 0.8, 0.8, 0.8, 1.0, 0.8, 0.8, 0.8, 1, 1, 1, 1.0, 0.8, 0.8, 0.8, 0.8, 1, 0.8, 0.6000000000000001, 0.8, 0.8, 0.4, 1, 1.0, 0.8, 0.8, 0.0, 0.4, 1, 1, 1, 1, 0.8, 0.6000000000000001, 0.8, 0.6000000000000001, 0.8, 0.8, 0.0, 0.8, 0.6000000000000001, 0.8, 0.4, 0.8, 0.8, 1, 0.0, 0.6000000000000001, 0.4, 0.2, 1, 0.8, 0.8, 0.8, 1, 0.8, 0.8, 0.8, 0.8, 0.8, 1, 0.4, 0.4, 0.4, 0.8, 0.8, 0.8, 0.8, 0.6000000000000001, 0.8, 0.2, 0.4, 0.8, 0.6000000000000001, 0.6000000000000001, 0.0, 0.8, 0.8, 0.8, 0.8, 1, 0.4, 1, 0.8, 0.8, 1, 1, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.0, 0.8, 0.6000000000000001, 1, 1, 0.8, 0.8, 0.6000000000000001, 1, 0.8, 1, 0.8, 0.8, 0.8, 1.0, 0.8, 1, 0.6000000000000001, 0.8, 0.8, 0.8, 0.8, 0.8, 0.4, 0.8, 0.8, 0.6000000000000001, 0.8, 0.2, 0.8, 1, 0.6000000000000001, 0.8, 0.0, 0.8, 0.8, 0.8, 0.8, 0.6000000000000001, 1, 1, 1, 0.8, 0.6000000000000001, 1, 0.8, 0.6000000000000001, 0.8, 0.0, 1, 0.8, 0.0, 0.6000000000000001, 0.8, 1.0, 0.6000000000000001, 0.8, 0.8, 0.0, 0.8, 0.8, 1, 0.8, 0.8, 0.8, 0.0, 1, 0.8, 0.4, 0.8, 0.6000000000000001, 0.8, 0.8, 0.0, 0.8, 1, 0.8, 0.6000000000000001, 0.6000000000000001, 1, 1, 0.0, 0.8, 1, 0.8, 0.0, 0.2, 0.8, 0.4, 0.8, 1, 1, 1, 0.6000000000000001, 0.8, 0.8, 0.8, 0.8, 0.0, 1, 1.0, 0.0, 0.0, 0.8, 0.8, 0.2, 0.0, 0.2, 0.6000000000000001, 1, 1, 0.8, 0.8, 1, 1.0, 0.0, 0.8, 1.0, 0.8, 0.8, 1, 0.8, 0.4, 0.6000000000000001, 0.4, 1] |
402870886.4 | 5.0 | 495 | 0.7365 | 389655424.0 | [0.4, 0.8, 0.4, 1, 0.4, 0.6000000000000001, 0.8, 0.8, 0.6000000000000001, 1, 1, 1, 1, 0.8, 1.0, 0.6000000000000001, 0.4, 0.8, 0.8, 1, 0.8, 0.4, 0.4, 0.8, 0.6000000000000001, 0.8, 0.8, 1, 0.8, 0.4, 0.4, 0.8, 0.8, 0.4, 1, 1, 0.4, 0.4, 0.8, 0.8, 0.8, 0.4, 1, 1, 0.4, 1, 1, 1, 0.8, 0.8, 1, 0.4, 0.4, 0.8, 0.4, 1, 1, 1, 0.4, 0.4, 0.8, 0.4, 0.8, 0.8, 0.4, 1, 0.8, 0.4, 0.8, 1, 0.8, 1.0, 1, 1, 0.8, 0.8, 0.8, 0.8, 1, 0.4, 1, 0.4, 0.4, 0.8, 0.8, 0.8, 0.8, 1, 0.0, 1, 0.4, 0.8, 0.4, 0.4, 0.4, 1, 0.8, 1.0, 0.4, 0.8, 0.4, 0.8, 1, 0.8, 0.8, 0.4, 0.8, 1, 1, 0.8, 0.8, 0.8, 0.8, 0.4, 0.4, 1, 1, 0.4, 0.8, 0.6000000000000001, 0.4, 1, 0.8, 1.0, 0.4, 0.4, 0.8, 1, 0.8, 0.8, 1.0, 0.8, 0.8, 0.8, 0.8, 1, 0.8, 0.6000000000000001, 0.4, 0.8, 0.4, 0.8, 0.8, 0.8, 0.6000000000000001, 0.8, 1, 1, 1, 0.8, 1, 0.6000000000000001, 0.8, 0.8, 0.8, 1, 1, 1, 0.6000000000000001, 0.4, 0.8, 0.0, 1, 0.6000000000000001, 0.4, 0.8, 0.4, 0.4, 1, 1, 1, 0.8, 0.8, 1.0, 0.8, 1.0, 0.4, 0.4, 0.4, 1, 1.0, 0.8, 0.0, 0.8, 1, 0.8, 0.4, 0.6000000000000001, 0.4, 0.8, 0.8, 0.8, 1, 1, 0.8, 0.8, 1, 1, 0.8, 0.8, 1.0, 0.4, 1, 0.4, 0.4, 1, 0.8, 0.8, 0.8, 1, 0.8, 0.4, 0.8, 0.8, 0.6000000000000001, 0.4, 0.8, 0.8, 1, 0.8, 0.8, 0.4, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 1, 0.8, 1, 0.8, 0.4, 0.4, 0.6000000000000001, 1, 1, 0.8, 0.8, 1.0, 1, 1, 0.8, 0.8, 0.4, 1, 0.6000000000000001, 0.8, 1, 0.8, 0.8, 0.8, 0.8, 0.8, 0.4, 0.4, 1, 0.8, 0.6000000000000001, 0.8, 0.8, 0.4, 1, 0.6000000000000001, 0.8, 0.4, 0.8, 1, 0.8, 0.8, 0.6000000000000001, 1, 0.8, 0.8, 0.4, 0.6000000000000001, 0.8, 0.8, 0.6000000000000001, 0.8, 0.4, 1.0, 0.8, 0.4, 1.0, 0.8, 1, 0.6000000000000001, 0.4, 1, 0.4, 0.4, 1, 1, 1, 1, 0.8, 0.4, 1, 0.8, 0.0, 0.8, 1.0, 0.8, 0.4, 0.4, 0.4, 1, 0.4, 0.6000000000000001, 0.8, 1, 1, 0.4, 0.8, 1, 1, 0.4, 0.8, 0.4, 0.4, 0.8, 1, 1, 1, 0.8, 0.4, 0.8, 0.4, 0.8, 0.4, 1, 1, 0.4, 0.4, 0.8, 0.4, 0.8, 0.4, 0.8, 0.6000000000000001, 1, 1, 0.8, 0.8, 1, 1, 0.4, 0.4, 0.6000000000000001, 0.4, 1, 0.8, 0.8, 0.4, 0.6000000000000001, 0.0, 1] |
418429363.2 | 6.0 | 594 | 0.7365 | 389655424.0 | [0.4, 0.8, 0.4, 1, 0.4, 0.6000000000000001, 0.8, 0.8, 0.6000000000000001, 1, 1, 1, 1, 0.8, 1.0, 0.6000000000000001, 0.4, 0.8, 0.8, 1, 0.8, 0.4, 0.4, 0.8, 0.6000000000000001, 0.8, 0.8, 1, 0.8, 0.4, 0.4, 0.8, 0.8, 0.4, 1, 1, 0.4, 0.4, 0.8, 0.8, 0.8, 0.4, 1, 1, 0.4, 1, 1, 1, 0.8, 0.8, 1, 0.4, 0.4, 0.8, 0.4, 1, 1, 1, 0.4, 0.4, 0.8, 0.4, 0.8, 0.8, 0.4, 1, 0.8, 0.4, 0.8, 1, 0.8, 1.0, 1, 1, 0.8, 0.8, 0.8, 0.8, 1, 0.4, 1, 0.4, 0.4, 0.8, 0.8, 0.8, 0.8, 1, 0.0, 1, 0.4, 0.8, 0.4, 0.4, 0.4, 1, 0.8, 1.0, 0.4, 0.8, 0.4, 0.8, 1, 0.8, 0.8, 0.4, 0.8, 1, 1, 0.8, 0.8, 0.8, 0.8, 0.4, 0.4, 1, 1, 0.4, 0.8, 0.6000000000000001, 0.4, 1, 0.8, 1.0, 0.4, 0.4, 0.8, 1, 0.8, 0.8, 1.0, 0.8, 0.8, 0.8, 0.8, 1, 0.8, 0.6000000000000001, 0.4, 0.8, 0.4, 0.8, 0.8, 0.8, 0.6000000000000001, 0.8, 1, 1, 1, 0.8, 1, 0.6000000000000001, 0.8, 0.8, 0.8, 1, 1, 1, 0.6000000000000001, 0.4, 0.8, 0.0, 1, 0.6000000000000001, 0.4, 0.8, 0.4, 0.4, 1, 1, 1, 0.8, 0.8, 1.0, 0.8, 1.0, 0.4, 0.4, 0.4, 1, 1.0, 0.8, 0.0, 0.8, 1, 0.8, 0.4, 0.6000000000000001, 0.4, 0.8, 0.8, 0.8, 1, 1, 0.8, 0.8, 1, 1, 0.8, 0.8, 1.0, 0.4, 1, 0.4, 0.4, 1, 0.8, 0.8, 0.8, 1, 0.8, 0.4, 0.8, 0.8, 0.6000000000000001, 0.4, 0.8, 0.8, 1, 0.8, 0.8, 0.4, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 1, 0.8, 1, 0.8, 0.4, 0.4, 0.6000000000000001, 1, 1, 0.8, 0.8, 1.0, 1, 1, 0.8, 0.8, 0.4, 1, 0.6000000000000001, 0.8, 1, 0.8, 0.8, 0.8, 0.8, 0.8, 0.4, 0.4, 1, 0.8, 0.6000000000000001, 0.8, 0.8, 0.4, 1, 0.6000000000000001, 0.8, 0.4, 0.8, 1, 0.8, 0.8, 0.6000000000000001, 1, 0.8, 0.8, 0.4, 0.6000000000000001, 0.8, 0.8, 0.6000000000000001, 0.8, 0.4, 1.0, 0.8, 0.4, 1.0, 0.8, 1, 0.6000000000000001, 0.4, 1, 0.4, 0.4, 1, 1, 1, 1, 0.8, 0.4, 1, 0.8, 0.0, 0.8, 1.0, 0.8, 0.4, 0.4, 0.4, 1, 0.4, 0.6000000000000001, 0.8, 1, 1, 0.4, 0.8, 1, 1, 0.4, 0.8, 0.4, 0.4, 0.8, 1, 1, 1, 0.8, 0.4, 0.8, 0.4, 0.8, 0.4, 1, 1, 0.4, 0.4, 0.8, 0.4, 0.8, 0.4, 0.8, 0.6000000000000001, 1, 1, 0.8, 0.8, 1, 1, 0.4, 0.4, 0.6000000000000001, 0.4, 1, 0.8, 0.8, 0.4, 0.6000000000000001, 0.0, 1] |
Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.6.1
- Tokenizers 0.14.1
- Downloads last month
- 6
Model tree for owanr/SChem5Labels-google-t5-v1_1-base-intra_model
Base model
google/t5-v1_1-base