File size: 18,303 Bytes
c8277ad dfc1ef8 5b9b0e3 dfc1ef8 c8277ad dfc1ef8 c8277ad dfc1ef8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
"""Image processor class for WD Tagger."""
from typing import Optional, List, Dict, Union, Tuple
import numpy as np
from PIL import Image
from transformers.image_processing_utils import (
BaseImageProcessor,
BatchFeature,
get_size_dict,
)
from transformers.image_transforms import (
rescale,
to_channel_dimension_format,
_rescale_for_pil_conversion,
to_pil_image,
)
from transformers.image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
)
from transformers.utils import TensorType, logging
logger = logging.get_logger(__name__)
def resize_with_padding(
image: np.ndarray,
size: Tuple[int, int],
color: Tuple[int, int, int],
resample: PILImageResampling = None,
reducing_gap: Optional[int] = None,
data_format: Optional[ChannelDimension] = None,
return_numpy: bool = True,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""
Resizes `image` to `(height, width)` specified by `size` using the PIL library.
Args:
image (`np.ndarray`):
The image to resize.
size (`Tuple[int, int]`):
The size to use for resizing the image.
color (`Tuple[int, int, int]`):
The color to use for padding the image.
resample (`int`, *optional*, defaults to `PILImageResampling.BILINEAR`):
The filter to user for resampling.
reducing_gap (`int`, *optional*):
Apply optimization by resizing the image in two steps. The bigger `reducing_gap`, the closer the result to
the fair resampling. See corresponding Pillow documentation for more details.
data_format (`ChannelDimension`, *optional*):
The channel dimension format of the output image. If unset, will use the inferred format from the input.
return_numpy (`bool`, *optional*, defaults to `True`):
Whether or not to return the resized image as a numpy array. If False a `PIL.Image.Image` object is
returned.
input_data_format (`ChannelDimension`, *optional*):
The channel dimension format of the input image. If unset, will use the inferred format from the input.
Returns:
`np.ndarray`: The resized image.
"""
resample = resample if resample is not None else PILImageResampling.BILINEAR
if not len(size) == 2:
raise ValueError("size must have 2 elements")
# For all transformations, we want to keep the same data format as the input image unless otherwise specified.
# The resized image from PIL will always have channels last, so find the input format first.
if input_data_format is None:
input_data_format = infer_channel_dimension_format(image)
data_format = input_data_format if data_format is None else data_format
# To maintain backwards compatibility with the resizing done in previous image feature extractors, we use
# the pillow library to resize the image and then convert back to numpy
do_rescale = False
if not isinstance(image, Image.Image):
do_rescale = _rescale_for_pil_conversion(image)
image = to_pil_image(
image, do_rescale=do_rescale, input_data_format=input_data_format
)
# PIL images are in the format (width, height)
assert isinstance(image, Image.Image)
height, width = size
original_width, original_height = image.size
# ratio
ratio = min(width / original_width, height / original_height)
# rescale and keep aspect ratio
new_width = int(original_width * ratio)
new_height = int(original_height * ratio)
resized_image = image.resize(
(new_width, new_height), resample=resample, reducing_gap=reducing_gap
)
# solid background
new_image = Image.new("RGBA", size, (color) + (255,))
# paste resized image at the center
offset = ((width - new_width) // 2, (height - new_height) // 2)
new_image.paste(
resized_image.convert("RGBA"), offset, resized_image.convert("RGBA")
)
new_image = new_image.convert("RGB")
# Convert to numpy array
image_array = np.asarray(new_image, dtype=np.float32)
# Convert PIL-native RGB to BGR
image_array = image_array[:, :, ::-1]
new_image = Image.fromarray(image_array.astype(np.uint8))
if return_numpy:
new_image = np.array(new_image)
# If the input image channel dimension was of size 1, then it is dropped when converting to a PIL image
# so we need to add it back if necessary.
new_image = (
np.expand_dims(new_image, axis=-1) if new_image.ndim == 2 else new_image
)
# The image is always in channels last format after converting from a PIL image
new_image = to_channel_dimension_format(
new_image, data_format, input_channel_dim=ChannelDimension.LAST
)
# If an image was rescaled to be in the range [0, 255] before converting to a PIL image, then we need to
# rescale it back to the original range.
new_image = rescale(new_image, 1 / 255) if do_rescale else new_image
return new_image
class WDTaggerImageProcessor(BaseImageProcessor):
r"""
Constructs a WD Tagger image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions to the specified `(size["height"],
size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method.
size (`dict`, *optional*, defaults to `{"height": 448, "width": 448}`):
Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess`
method.
color (`List[int]`):
Color to use for padding the image after resizing. Can be overridden by the `size` parameter in the `preprocess`
method.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BILINEAR`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
`preprocess` method.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Optional[Dict[str, int]] = None,
color: Optional[List[int]] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"height": 448, "width": 448}
size = get_size_dict(size)
color = color if color is not None else [255, 255, 255]
self.do_resize = do_resize
self.do_rescale = do_rescale
self.do_normalize = do_normalize
self.size = size
self.color = color
self.resample = resample
self.rescale_factor = rescale_factor
self.image_mean = (
image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
)
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
color: List[int] = [255, 255, 255],
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image to `(size["height"], size["width"])`.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`.
data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
Returns:
`np.ndarray`: The resized image.
"""
size = get_size_dict(size)
if "height" not in size or "width" not in size:
raise ValueError(
f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}"
)
output_size = (size["height"], size["width"])
color = tuple(color)
return resize_with_padding(
image,
size=output_size,
color=color,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def preprocess(
self,
images: ImageInput,
do_resize: Optional[bool] = None,
size: Optional[Dict[str, int]] = None,
color: Optional[List[int]] = None,
resample: PILImageResampling = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
):
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Dictionary in the format `{"height": h, "width": w}` specifying the size of the output image after
resizing.
resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`):
`PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has
an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
resample = resample if resample is not None else self.resample
rescale_factor = (
rescale_factor if rescale_factor is not None else self.rescale_factor
)
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
size = size if size is not None else self.size
size_dict = get_size_dict(size)
color = color if color is not None else self.color
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_resize:
images = [
self.resize(
image=image,
size=size_dict,
color=color,
resample=resample,
input_data_format=input_data_format,
)
for image in images
]
if do_rescale:
images = [
self.rescale(
image=image,
scale=rescale_factor,
input_data_format=input_data_format,
)
for image in images
]
if do_normalize:
images = [
self.normalize(
image=image,
mean=image_mean,
std=image_std,
input_data_format=input_data_format,
)
for image in images
]
images = [
to_channel_dimension_format(
image, data_format, input_channel_dim=input_data_format
)
for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
|