metadata
library_name: transformers
license: apache-2.0
base_model: SmilingWolf/wd-swinv2-tagger-v3
inference: false
tags:
- wd-tagger
- optimum
WD SwinV2 Tagger v3 with π€ transformers
Converted from SmilingWolf/wd-swinv2-tagger-v3 to transformers library format.
Example
Installation
pip install transformers
Pipeline
from transformers import pipeline
pipe = pipeline(
"image-classification",
model="p1atdev/wd-swinv2-tagger-v3-hf",
trust_remote_code=True,
)
print(pipe("sample.webp", top_k=15))
#[{'label': '1girl', 'score': 0.9973934888839722},
# {'label': 'solo', 'score': 0.9719744324684143},
# {'label': 'dress', 'score': 0.9539461135864258},
# {'label': 'hat', 'score': 0.9511678218841553},
# {'label': 'outdoors', 'score': 0.9438753128051758},
# ...
AutoModel
from PIL import Image
import numpy as np
import torch
from transformers import (
AutoImageProcessor,
AutoModelForImageClassification,
)
MODEL_NAME = "p1atdev/wd-swinv2-tagger-v3-hf"
model = AutoModelForImageClassification.from_pretrained(
MODEL_NAME,
)
processor = AutoImageProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True)
image = Image.open("sample.webp")
inputs = processor.preprocess(image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs.to(model.device, model.dtype))
logits = torch.sigmoid(outputs.logits[0]) # take the first logits
# get probabilities
results = {model.config.id2label[i]: logit.float() for i, logit in enumerate(logits)}
results = {
k: v for k, v in sorted(results.items(), key=lambda item: item[1], reverse=True) if v > 0.35 # 35% threshold
}
print(results) # rating tags and character tags are also included
#{'1girl': tensor(0.9974),
# 'solo': tensor(0.9720),
# 'dress': tensor(0.9539),
# 'hat': tensor(0.9512),
# 'outdoors': tensor(0.9439),
# ...
Accelerate with π€ Optimum
Maybe about 30% faster and about 50% light weight model size than transformers version, but the accuracy is slightly degraded.
pip install optimum[onnxruntime]
-from transformers import pipeline
+from optimum.pipelines import pipeline
pipe = pipeline(
"image-classification",
model="p1atdev/wd-swinv2-tagger-v3-hf",
trust_remote_code=True,
)
print(pipe("sample.webp", top_k=15))
#[{'label': '1girl', 'score': 0.9966088533401489},
# {'label': 'solo', 'score': 0.9740601778030396},
# {'label': 'dress', 'score': 0.9618403911590576},
# {'label': 'hat', 'score': 0.9563733339309692},
# {'label': 'outdoors', 'score': 0.945336639881134},
# ...
Labels
All of rating tags have prefix rating:
and character tags have prefix character:
.
- Rating tags:
rating:general
,rating:sensitive
, ... - Character tags:
character:frieren
,character:hatsune miku
, ...