Edit model card

BioMedRoBERTa-finetuned-ner-pablo-just-classifier

This model is a fine-tuned version of emilyalsentzer/Bio_ClinicalBERT on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1228
  • Precision: 0.6701
  • Recall: 0.6809
  • F1: 0.6754
  • Accuracy: 0.9657

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.01
  • train_batch_size: 512
  • eval_batch_size: 512
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 2048
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.9697 16 0.2938 0.4425 0.5130 0.4751 0.9361
No log 2.0 33 0.1815 0.5546 0.5873 0.5705 0.9535
No log 2.9697 49 0.1617 0.5838 0.6189 0.6008 0.9575
No log 4.0 66 0.1482 0.6070 0.6396 0.6229 0.9602
No log 4.9697 82 0.1340 0.6465 0.6563 0.6513 0.9633
No log 6.0 99 0.1306 0.6561 0.6638 0.6599 0.9641
No log 6.9697 115 0.1290 0.6569 0.6705 0.6636 0.9645
No log 8.0 132 0.1246 0.6664 0.6794 0.6728 0.9654
No log 8.9697 148 0.1230 0.6699 0.6793 0.6745 0.9656
No log 9.6970 160 0.1228 0.6701 0.6809 0.6754 0.9657

Framework versions

  • Transformers 4.44.1
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
8
Safetensors
Model size
108M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for pabRomero/BioMedRoBERTa-finetuned-ner-pablo-just-classifier

Finetuned
(16)
this model
Finetunes
1 model