orca_alpaca_3b / README.md
Pankaj Mathur
Update README.md
ad636d6
|
raw
history blame
3.7 kB
---
license: mit
language:
- en
library_name: adapter-transformers
---
# alpaca_orca_open_llama: An Open_LLaMA-3B model trained on custom Alpaca dataset using Orca Research paper approaches
# Dataset
We train OpenLLaMa-3B model on custom explained tuned Alpaca dataset (~52K) created using approaches from [Orca Research Paper](https://arxiv.org/abs/2306.02707).
We leverage all of the 15 system instructions provided in [Orca Research Paper](https://arxiv.org/abs/2306.02707) to generate custom Alpaca dataset, in contrast to vanilla instruction tuning approaches used by original [Alpaca research paper](https://crfm.stanford.edu/2023/03/13/alpaca.html).
This helps student model aka [alpaca_orca_open_llama_3b](psmathur/alpaca_orca_open_llama_3b) to learn ***thought*** process from teacher model, which is ChatGPT (gpt-3.5-turbo-0301 version).
Please pay attention how the **System** prompt is added before each *instruction* in below example usage.
# Training
The training configurations are provided in the table below.
The training takes on 4x A600(50G) GPUs and lasts for around 20 Hours for cost of $66 using [Lambda Labs](https://lambdalabs.com)
We used DeepSpeed with Zero-3 approaches for parallel gpu training.
|||
|:-------------:|:-------------:|
|*batch size*|16|
|*train_micro_batch_size_per_gpu*|2|
|*gradient_accumulation_steps*|2|
|*Learning rate*|2e-5|
|*Epochs*|3|
|*Max length*|1024|
# Example Usage
Below shows an example on how to use OpenAlpaca
```python
import torch
from transformers import LlamaForCausalLM, LlamaTokenizer
# change model_path between 3b,7b or 13b
model_path = 'psmathur/alpaca_orca_open_llama_3b'
tokenizer = LlamaTokenizer.from_pretrained(model_path)
model = LlamaForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float16, device_map='auto',
)
# check more details here https://github.com/openlm-research/open_llama
tokenizer.bos_token_id, tokenizer.eos_token_id = 1,2
# same prompt as provided by Orca Research Paper
system = 'You are an AI assistant. User will you give you a task. Your goal is to complete the task as faithfully as you can. While performing the task think step-by-step and justify your steps.'
instruction = 'Use the given data to calculate the median.'
input = '[7, 3, 8, 2, 10]'
prompt_input = f"### System:\n{system}\n\n#\n\n### User:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n"
#prompt_no_input = f"### System:\n{system}\n\n#\n\n### User:\n{instruction}\n\n### Response:\n"
tokens = tokenizer.encode(prompt_no_input)
tokens = torch.LongTensor(tokens).unsqueeze(0)
tokens = tokens.to('cuda')
instance = {'input_ids': tokens,'top_k': 50, 'top_p': 1.0, 'generate_len': 1024}
# instance = {'input_ids': tokens,'top_k': 50, 'top_p': 1.0, 'temperature':0.7, 'generate_len': 1024}
with torch.no_grad():
rest = model.generate(
input_ids=tokens,
max_length=length+instance['generate_len'],
use_cache=True,
do_sample=True,
top_p=instance['top_p'],
top_k=instance['top_k'],
# temperature=instance['temperature']
)
output = rest[0][length:]
string = tokenizer.decode(output, skip_special_tokens=True)
print(f'[!] Response: {string}')
```
Next Goals:
1) Try more data, Dolly V2, WizardLM, & Others (we are open for suggestions)
2) Try bigger OpenLLaMA models 7B and 13B
3) Try better GPU for training, couldn't get 8xA100 (40GB), I guess they are in hot demand now.
4) Provide more options for Text generation UI. (may be https://github.com/oobabooga/text-generation-webui)
6) Provide 4bit GGML/GPTQ quantized model (may be [TheBloke](https://huggingface.co/TheBloke) can help here)