SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'What are the privacy and civil liberties implications of using biometric identification technologies in New York schools?',
'the privacy, civil rights, and civil liberties implications of the use of such technologies be issued before \nbiometric identification technologies can be used in New York schools. \nFederal law requires employers, and any consultants they may retain, to report the costs \nof surveilling employees in the context of a labor dispute, providing a transparency \nmechanism to help protect worker organizing. Employers engaging in workplace surveillance "where \nan object there-of, directly or indirectly, is […] to obtain information concerning the activities of employees or a \nlabor organization in connection with a labor dispute" must report expenditures relating to this surveillance to',
'and other data-driven automated systems most directly collect data on, make inferences about, and may cause \nharm to individuals. But the overall magnitude of their impacts may be most readily visible at the level of com-\nmunities. Accordingly, the concept of community is integral to the scope of the Blueprint for an AI Bill of Rights. \nUnited States law and policy have long employed approaches for protecting the rights of individuals, but exist-\ning frameworks have sometimes struggled to provide protections when effects manifest most clearly at a com-\nmunity level. For these reasons, the Blueprint for an AI Bill of Rights asserts that the harms of automated',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.79 |
cosine_accuracy@3 | 0.91 |
cosine_accuracy@5 | 0.93 |
cosine_accuracy@10 | 0.97 |
cosine_precision@1 | 0.79 |
cosine_precision@3 | 0.3033 |
cosine_precision@5 | 0.186 |
cosine_precision@10 | 0.097 |
cosine_recall@1 | 0.79 |
cosine_recall@3 | 0.91 |
cosine_recall@5 | 0.93 |
cosine_recall@10 | 0.97 |
cosine_ndcg@10 | 0.883 |
cosine_mrr@10 | 0.8549 |
cosine_map@100 | 0.8562 |
dot_accuracy@1 | 0.79 |
dot_accuracy@3 | 0.91 |
dot_accuracy@5 | 0.93 |
dot_accuracy@10 | 0.97 |
dot_precision@1 | 0.79 |
dot_precision@3 | 0.3033 |
dot_precision@5 | 0.186 |
dot_precision@10 | 0.097 |
dot_recall@1 | 0.79 |
dot_recall@3 | 0.91 |
dot_recall@5 | 0.93 |
dot_recall@10 | 0.97 |
dot_ndcg@10 | 0.883 |
dot_mrr@10 | 0.8549 |
dot_map@100 | 0.8562 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 600 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 600 samples:
sentence_0 sentence_1 type string string details - min: 10 tokens
- mean: 19.96 tokens
- max: 39 tokens
- min: 6 tokens
- mean: 115.57 tokens
- max: 223 tokens
- Samples:
sentence_0 sentence_1 What is the primary purpose of the AI Bill of Rights as outlined in the blueprint?
BLUEPRINT FOR AN
AI BILL OF
RIGHTS
MAKING AUTOMATED
SYSTEMS WORK FOR
THE AMERICAN PEOPLE
OCTOBER 2022In what month and year was the AI Bill of Rights blueprint published?
BLUEPRINT FOR AN
AI BILL OF
RIGHTS
MAKING AUTOMATED
SYSTEMS WORK FOR
THE AMERICAN PEOPLE
OCTOBER 2022When was the Blueprint for an AI Bill of Rights published by the White House Office of Science and Technology Policy?
About this Document
The Blueprint for an AI Bill of Rights: Making Automated Systems Work for the American People was
published by the White House Office of Science and Technology Policy in October 2022. This framework was
released one year after OSTP announced the launch of a process to develop “a bill of rights for an AI-powered
world.” Its release follows a year of public engagement to inform this initiative. The framework is available
online at: https://www.whitehouse.gov/ostp/ai-bill-of-rights
About the Office of Science and Technology Policy
The Office of Science and Technology Policy (OSTP) was established by the National Science and Technology - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 384, 192, 96, 48, 24 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 20per_device_eval_batch_size
: 20num_train_epochs
: 5multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 20per_device_eval_batch_size
: 20per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | cosine_map@100 |
---|---|---|
1.0 | 30 | 0.8353 |
1.6667 | 50 | 0.8590 |
2.0 | 60 | 0.8517 |
3.0 | 90 | 0.8592 |
3.3333 | 100 | 0.8567 |
4.0 | 120 | 0.8570 |
5.0 | 150 | 0.8565 |
1.0 | 30 | 0.8598 |
1.6667 | 50 | 0.8519 |
2.0 | 60 | 0.8560 |
3.0 | 90 | 0.8556 |
3.3333 | 100 | 0.8564 |
4.0 | 120 | 0.8566 |
5.0 | 150 | 0.8562 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for pattonma/AIE4_midterm_tuned_embeddings
Base model
sentence-transformers/all-MiniLM-L6-v2Evaluation results
- Cosine Accuracy@1 on Unknownself-reported0.790
- Cosine Accuracy@3 on Unknownself-reported0.910
- Cosine Accuracy@5 on Unknownself-reported0.930
- Cosine Accuracy@10 on Unknownself-reported0.970
- Cosine Precision@1 on Unknownself-reported0.790
- Cosine Precision@3 on Unknownself-reported0.303
- Cosine Precision@5 on Unknownself-reported0.186
- Cosine Precision@10 on Unknownself-reported0.097
- Cosine Recall@1 on Unknownself-reported0.790
- Cosine Recall@3 on Unknownself-reported0.910