|
--- |
|
language: |
|
- en |
|
- ca |
|
license: apache-2.0 |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- dataset_size:1K<n<10K |
|
- loss:CoSENTLoss |
|
base_model: microsoft/mpnet-base |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
widget: |
|
- source_sentence: Dia Internacional del Nen Prematur |
|
sentences: |
|
- Premiats a les comarques de Barcelona |
|
- Les concordances són adjectiu / substantiu o verb / substantiu. |
|
- Els Mossos en busquen un altre, que va aconseguir fugir en ser enxampats 'in fraganti' |
|
- source_sentence: Vulneració del dret a la llibertat |
|
sentences: |
|
- Vulneració del dret a un jutge imparcial |
|
- Detenen un home a Malgrat de Mar per apallissar un escombriaire |
|
- La víctima ha rebut un cop de puny i ha caigut a terra inconscient |
|
- source_sentence: Agafem un taxi i ens plantem allà. |
|
sentences: |
|
- És una activitat gratuïta oberta al públic general. |
|
- El líder del PSC, Miquel Iceta, serà el nou president del Senat |
|
- El PSOE ja no descarta l’aplicació de l’article 155 de la Constitució a Catalunya |
|
- source_sentence: No ho entenc, però és el que hi ha. |
|
sentences: |
|
- és dels plats que a casa ens encanten! |
|
- El Punt d'Informació Juvenil és el servei més actiu del centre. |
|
- Puigdemont reunirà dimecres a Bèlgica els diputats de JxCat |
|
- source_sentence: Però que hi ha de cert en tot això? |
|
sentences: |
|
- Però, què hi ha de veritat en tot això? |
|
- Els camioners dissolen la marxa lenta a les rondes de Barcelona |
|
- El 112 atén 747.730 trucades durant el primer semestre, un 9,6% més que l'any |
|
passat |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: MPNet base trained on semantic text similarity |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.9369799393019737 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.991833254558149 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.9582116235734125 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.9876060961452328 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.9594231143506534 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.9887559900790531 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.9469313911363318 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.9834282009396937 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.9594231143506534 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.991833254558149 |
|
name: Spearman Max |
|
- type: pearson_cosine |
|
value: 0.5855972037779524 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.5854785473306573 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.5881281979560977 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.578667646485271 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.5851079475768374 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.5754637407144132 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.5612927132777441 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.5630862098985 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.5881281979560977 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.5854785473306573 |
|
name: Spearman Max |
|
- type: pearson_cosine |
|
value: 0.6501162382185041 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.6819594226888658 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.6517756634326819 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6701084565797553 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.6553647425414415 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.675292747578234 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.6350099608995957 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.6458150666120989 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.6553647425414415 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.6819594226888658 |
|
name: Spearman Max |
|
--- |
|
|
|
# MPNet base trained on semantic text similarity |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [projecte-aina/sts-ca](https://huggingface.co/datasets/projecte-aina/sts-ca) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- [projecte-aina/sts-ca](https://huggingface.co/datasets/projecte-aina/sts-ca) |
|
- **Languages:** en, ca |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("pauhidalgoo/finetuned-sts-ca-mpnet-base") |
|
# Run inference |
|
sentences = [ |
|
'Però que hi ha de cert en tot això?', |
|
'Però, què hi ha de veritat en tot això?', |
|
'Els camioners dissolen la marxa lenta a les rondes de Barcelona', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
|
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.937 | |
|
| **spearman_cosine** | **0.9918** | |
|
| pearson_manhattan | 0.9582 | |
|
| spearman_manhattan | 0.9876 | |
|
| pearson_euclidean | 0.9594 | |
|
| spearman_euclidean | 0.9888 | |
|
| pearson_dot | 0.9469 | |
|
| spearman_dot | 0.9834 | |
|
| pearson_max | 0.9594 | |
|
| spearman_max | 0.9918 | |
|
|
|
#### Semantic Similarity |
|
|
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.5856 | |
|
| **spearman_cosine** | **0.5855** | |
|
| pearson_manhattan | 0.5881 | |
|
| spearman_manhattan | 0.5787 | |
|
| pearson_euclidean | 0.5851 | |
|
| spearman_euclidean | 0.5755 | |
|
| pearson_dot | 0.5613 | |
|
| spearman_dot | 0.5631 | |
|
| pearson_max | 0.5881 | |
|
| spearman_max | 0.5855 | |
|
|
|
#### Semantic Similarity |
|
|
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:----------| |
|
| pearson_cosine | 0.6501 | |
|
| **spearman_cosine** | **0.682** | |
|
| pearson_manhattan | 0.6518 | |
|
| spearman_manhattan | 0.6701 | |
|
| pearson_euclidean | 0.6554 | |
|
| spearman_euclidean | 0.6753 | |
|
| pearson_dot | 0.635 | |
|
| spearman_dot | 0.6458 | |
|
| pearson_max | 0.6554 | |
|
| spearman_max | 0.682 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### projecte-aina/sts-ca |
|
|
|
* Dataset: [projecte-aina/sts-ca](https://huggingface.co/datasets/projecte-aina/sts-ca) |
|
* Size: 2,073 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | label | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 10 tokens</li><li>mean: 32.36 tokens</li><li>max: 82 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 30.57 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.56</li><li>max: 5.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | label | |
|
|:-------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------| |
|
| <code>Atorga per primer cop les mencions Encarna Sanahuja a la inclusió de la perspectiva de gènere en docència Universitària</code> | <code>Creen la menció M. Encarna Sanahuja a la inclusió de la perspectiva de gènere en docència universitària</code> | <code>3.5</code> | |
|
| <code>Finalment, afegiu-hi els bolets que haureu saltat en una paella amb oli i deixeu-ho coure tot junt durant 5 minuts.</code> | <code>Finalment, poseu-hi les minipastanagues tallades a dauets, els pèsols, rectifiqueu-ho de sal i deixeu-ho coure tot junt durant un parell de minuts més.</code> | <code>1.25</code> | |
|
| <code>El TC suspèn el pla d'acció exterior i de relacions amb la UE de la Generalitat</code> | <code>El Constitucional manté la suspensió del pla estratègic d'acció exterior i relacions amb la UE</code> | <code>3.6700000762939453</code> | |
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_cos_sim" |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### projecte-aina/sts-ca |
|
|
|
* Dataset: [projecte-aina/sts-ca](https://huggingface.co/datasets/projecte-aina/sts-ca) |
|
* Size: 500 evaluation samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | label | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 10 tokens</li><li>mean: 32.94 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 31.42 tokens</li><li>max: 69 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.58</li><li>max: 5.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | label | |
|
|:---------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------|:--------------------------------| |
|
| <code>L'euríbor puja una centèsima fins el -0,189% al gener després de setze mesos de caigudes</code> | <code>La morositat de bancs i caixes repunta moderadament fins el 9,44%, després d'onze mesos de caigudes</code> | <code>1.6699999570846558</code> | |
|
| <code>Demanen 3 anys de presó a l'ex treballador d'una farmàcia de Lleida per robar més de 550 unitats de Viagra i Cialis</code> | <code>L'extreballador d'una farmàcia de Lleida accepta sis mesos de presó per robar més de 500 unitats de Viagra i Cialis</code> | <code>2.0</code> | |
|
| <code>Es tracta d'un jove de 20 anys que ha estat denunciat als Mossos d'Esquadra</code> | <code>Es tracta d'un jove de 21 anys que ha estat denunciat penalment pels Mossos</code> | <code>3.0</code> | |
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "pairwise_cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `num_train_epochs`: 40 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: no |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 40 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | spearman_cosine | |
|
|:-------:|:----:|:-------------:|:---------------:| |
|
| 3.8462 | 500 | 4.5209 | - | |
|
| 7.6923 | 1000 | 4.1445 | - | |
|
| 11.5385 | 1500 | 3.9291 | - | |
|
| 15.3846 | 2000 | 3.6952 | - | |
|
| 19.2308 | 2500 | 3.5393 | - | |
|
| 23.0769 | 3000 | 3.3778 | - | |
|
| 26.9231 | 3500 | 3.1712 | - | |
|
| 30.7692 | 4000 | 2.8265 | - | |
|
| 34.6154 | 4500 | 2.6265 | - | |
|
| 38.4615 | 5000 | 2.3259 | - | |
|
| 40.0 | 5200 | - | 0.6820 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.0 |
|
- Transformers: 4.41.1 |
|
- PyTorch: 2.3.0+cu121 |
|
- Accelerate: 0.30.1 |
|
- Datasets: 2.19.2 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### CoSENTLoss |
|
```bibtex |
|
@online{kexuefm-8847, |
|
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, |
|
author={Su Jianlin}, |
|
year={2022}, |
|
month={Jan}, |
|
url={https://kexue.fm/archives/8847}, |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |