results / README.md
paulac9's picture
Model save
ef05f4e
metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: results
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6461538461538462

results

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8263
  • Accuracy: 0.6462

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 1.1611 0.5077
No log 2.0 3 1.1465 0.5077
No log 3.0 5 1.1057 0.5077
No log 4.0 6 1.1134 0.5077
No log 5.0 7 1.0864 0.5077
No log 6.0 9 0.9838 0.5385
0.5404 7.0 11 0.9655 0.5538
0.5404 8.0 12 0.9630 0.5692
0.5404 9.0 13 0.9631 0.5538
0.5404 10.0 15 1.0177 0.5385
0.5404 11.0 17 1.0124 0.5538
0.5404 12.0 18 0.9905 0.5692
0.5404 13.0 19 0.9473 0.6154
0.5207 14.0 21 0.9549 0.6
0.5207 15.0 23 0.9348 0.5846
0.5207 16.0 24 0.9019 0.5846
0.5207 17.0 25 0.8687 0.5846
0.5207 18.0 27 0.8462 0.5846
0.5207 19.0 29 0.8418 0.6154
0.5146 20.0 30 0.8419 0.6
0.5146 21.0 31 0.8435 0.5692
0.5146 22.0 33 0.8415 0.5538
0.5146 23.0 35 0.8293 0.6154
0.5146 24.0 36 0.8254 0.6
0.5146 25.0 37 0.8219 0.6154
0.5146 26.0 39 0.8195 0.6462
0.4352 27.0 41 0.8192 0.6462
0.4352 28.0 42 0.8198 0.6308
0.4352 29.0 43 0.8230 0.6615
0.4352 30.0 45 0.8264 0.6462
0.4352 31.0 47 0.8268 0.6462
0.4352 32.0 48 0.8266 0.6462
0.4352 33.0 49 0.8263 0.6462
0.4724 33.33 50 0.8263 0.6462

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1