metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: results
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.6461538461538462
results
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.8263
- Accuracy: 0.6462
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 1 | 1.1611 | 0.5077 |
No log | 2.0 | 3 | 1.1465 | 0.5077 |
No log | 3.0 | 5 | 1.1057 | 0.5077 |
No log | 4.0 | 6 | 1.1134 | 0.5077 |
No log | 5.0 | 7 | 1.0864 | 0.5077 |
No log | 6.0 | 9 | 0.9838 | 0.5385 |
0.5404 | 7.0 | 11 | 0.9655 | 0.5538 |
0.5404 | 8.0 | 12 | 0.9630 | 0.5692 |
0.5404 | 9.0 | 13 | 0.9631 | 0.5538 |
0.5404 | 10.0 | 15 | 1.0177 | 0.5385 |
0.5404 | 11.0 | 17 | 1.0124 | 0.5538 |
0.5404 | 12.0 | 18 | 0.9905 | 0.5692 |
0.5404 | 13.0 | 19 | 0.9473 | 0.6154 |
0.5207 | 14.0 | 21 | 0.9549 | 0.6 |
0.5207 | 15.0 | 23 | 0.9348 | 0.5846 |
0.5207 | 16.0 | 24 | 0.9019 | 0.5846 |
0.5207 | 17.0 | 25 | 0.8687 | 0.5846 |
0.5207 | 18.0 | 27 | 0.8462 | 0.5846 |
0.5207 | 19.0 | 29 | 0.8418 | 0.6154 |
0.5146 | 20.0 | 30 | 0.8419 | 0.6 |
0.5146 | 21.0 | 31 | 0.8435 | 0.5692 |
0.5146 | 22.0 | 33 | 0.8415 | 0.5538 |
0.5146 | 23.0 | 35 | 0.8293 | 0.6154 |
0.5146 | 24.0 | 36 | 0.8254 | 0.6 |
0.5146 | 25.0 | 37 | 0.8219 | 0.6154 |
0.5146 | 26.0 | 39 | 0.8195 | 0.6462 |
0.4352 | 27.0 | 41 | 0.8192 | 0.6462 |
0.4352 | 28.0 | 42 | 0.8198 | 0.6308 |
0.4352 | 29.0 | 43 | 0.8230 | 0.6615 |
0.4352 | 30.0 | 45 | 0.8264 | 0.6462 |
0.4352 | 31.0 | 47 | 0.8268 | 0.6462 |
0.4352 | 32.0 | 48 | 0.8266 | 0.6462 |
0.4352 | 33.0 | 49 | 0.8263 | 0.6462 |
0.4724 | 33.33 | 50 | 0.8263 | 0.6462 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1