metadata
license: apache-2.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- lazymergekit
- cognitivecomputations/dolphin-2_6-phi-2
- rhysjones/phi-2-orange
base_model:
- cognitivecomputations/dolphin-2_6-phi-2
- rhysjones/phi-2-orange
PhiMiX-2x2B-raw
Code is work in progress
This is a RAW MoE meant to be finetuned
PhiMiX-2x2B is a Mixure of Experts (MoE) made with the following models using mergekit:
©️ Credits
- mlabonne's phixtral for the PhiConfig and inference code.
- mergekit code which I tweaked (you can find the PhiConfig here)
by mainly adding the config in the
moe_mixtral.py
script frommixtral
branch.
🧩 Configuration
base_model: rhysjones/phi-2-orange
gate_mode: random
dtype: float16
experts:
- source_model: cognitivecomputations/dolphin-2_6-phi-2
positive_prompts: [""]
- source_model: rhysjones/phi-2-orange
positive_prompts: [""]
💻 Usage
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
import torch
model_name = "paulilioaica/PhiMiX-2x2B-raw"
torch.set_default_device("cuda")
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True)
instruction = '''
def print_prime(n):
"""
Print all primes between 1 and n
"""
'''
tokenizer = AutoTokenizer.from_pretrained(
f"{model_name}",
trust_remote_code=True
)
# Tokenize the input string
inputs = tokenizer(
instruction,
return_tensors="pt",
return_attention_mask=False
)
# Generate text using the model
outputs = model.generate(**inputs, max_length=200)
# Decode and print the output
text = tokenizer.batch_decode(outputs)[0]
print(text)