metadata
language:
- en
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_trainer
datasets:
- swag
metrics:
- accuracy
model-index:
- name: llm-deberta-v3-swag
results:
- task:
name: Multiple Choice
type: multiple-choice
dataset:
name: SWAG
type: swag
config: regular
split: validation
args: regular
metrics:
- name: Accuracy
type: accuracy
value: 0.8679895997047424
llm-deberta-v3-swag
This model is a fine-tuned version of microsoft/deberta-v3-base on the SWAG dataset. It achieves the following results on the evaluation set:
- Loss: 0.7839
- Accuracy: 0.8680
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
Training results
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0