llm-deberta-v3-swag / README.md
Paulo Vitor
fine tune swag
9adc396
metadata
language:
  - en
license: mit
base_model: microsoft/deberta-v3-base
tags:
  - generated_from_trainer
datasets:
  - swag
metrics:
  - accuracy
model-index:
  - name: llm-deberta-v3-swag
    results:
      - task:
          name: Multiple Choice
          type: multiple-choice
        dataset:
          name: SWAG
          type: swag
          config: regular
          split: validation
          args: regular
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8679895997047424

llm-deberta-v3-swag

This model is a fine-tuned version of microsoft/deberta-v3-base on the SWAG dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7839
  • Accuracy: 0.8680

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0